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PREFA CE.

The present work is based on a dissertation submitted at the Fellowship
Examination of Trinity College, Cambridge, in the year 1895. Section B of
the third chapter is in the main a reprint, with some serious alterations, of
an article in Mind (New Series, No. 17). The substance of the book has
been given in the form of lectures at the Johns Hopkins University,
Baltimore, and at Bryn Mawr College, Pennsylvania.

My chief obligation is to Professor Klein. Throughout the first chapter, I
have found his "Lectures on non-Euclidean Geometry" an invaluable
guide; I have accepted from him the division of Metageometry into three
periods, and have found my historical work much lightened by his
references to previous writers. In Logic, I have learnt most from Mr
Bradley, and next to him, from Sigwart and Dr Bosanquet. On several
important points, I have derived useful suggestions from Professor James's
"Principles of Psychology."



My thanks are due to Mr G. F. Stout and Mr A. N. Whitehead for kindly
reading my proofs, and helping me by many useful criticisms. To Mr
Whitehead I owe, also, the inestimable assistance of constant criticism and
suggestion throughout the course of construction, especially as regards the
philosophical importance of projective Geometry.

HASLEMERE.

May, 1897.
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JOHN McTAGGART ELLIS McTAGGART

TO WHOSE DISCOURSE AND FRIENDSHIP IS OWING

THE EXISTENCE OF THIS BOOK.

TA BLE O F CO N TEN TS.

INTRODUCTION.
OUR PROBLEM DEFINED BY ITS RELATIONS TO

LOGIC, PSYCHOLOGY AND MATHEMATICS.
PAGE

1. The problem first received a modern form through
Kant, who connected the à priori with the subjective 1

2. A mental state is subjective, for Psychology, when its
immediate cause does not lie in the outer world 2

3. A piece of knowledge is à priori, for Epistemology,
when without it knowledge would be impossible

2

4. The subjective and the à priori belong respectively to 3



Psychology and to Epistemology. The latter alone
will be investigated in this essay

5. My test of the à priori will be purely logical: what
knowledge is necessary for experience? 3

6. But since the necessary is hypothetical, we must
include, in the à priori, the ground of necessity 4

7. This may be the essential postulate of our science, or
the element, in the subject-matter, which is
necessary to experience; 4

8. Which, however, are both at bottom the same ground 5
9. Forecast of the work 5
 

CHAPTER I.
A SHORT HISTORY OF METAGEOMETRY.

10. Metageometry began by rejecting the axiom of
parallels 7

11. Its history may be divided into three periods: the
synthetic, the metrical and the projective 7

12. The first period was inaugurated by Gauss, 10
13. Whose suggestions were developed independently by

Lobatchewsky 10
14. And Bolyai 11
15. The purpose of all three was to show that the axiom of

parallels could not be deduced from the others, since
its denial did not lead to contradictions 12

16. The second period had a more philosophical aim, and
was inspired chiefly by Gauss and Herbart 13

17. The first work of this period, that of Riemann, invented
two new conceptions: 14

18. The first, that of a manifold, is a class-conception,
containing space as a species, 14



19. And defined as such that its determinations form a
collection of magnitudes

15

20. The second, the measure of curvature of a manifold,
grew out of curvature in curves and surfaces 16

21. By means of Gauss's analytical formula for the
curvature of surfaces, 19

22. Which enables us to define a constant measure of
curvature of a three-dimensional space without
reference to a fourth dimension 20

23. The main result of Riemann's mathematical work was
to show that, if magnitudes are independent of place,
the measure of curvature of space must be constant 21

24. Helmholtz, who was more of a philosopher than a
mathematician, 22

25. Gave a new but incorrect formulation of the essential
axioms, 23

26. And deduced the quadratic formula for the
infinitesimal arc, which Riemann had assumed 24

27. Beltrami gave Lobatchewsky's planimetry a Euclidean
interpretation, 25

28. Which is analogous to Cayley's theory of distance; 26
29. And dealt with n-dimensional spaces of constant

negative curvature 27
30. The third period abandons the metrical methods of the

second, and extrudes the notion of spatial quantity 27
31. Cayley reduced metrical properties to projective

properties, relative to a certain conic or quadric, the
Absolute; 28

32. And Klein showed that the Euclidean or non-Euclidean
systems result, according to the nature of the
Absolute; 29

33. Hence Euclidean space appeared to give rise to all the
kinds of Geometry, and the question, which is true,
appeared reduced to one of convention 30



34. But this view is due to a confusion as to the nature of
the coordinates employed

30

35. Projective coordinates have been regarded as dependent
on distance, and thus really metrical 31

36. But this is not the case, since anharmonic ratio can be
projectively defined 32

37. Projective coordinates, being purely descriptive, can
give no information as to metrical properties, and the
reduction of metrical to projective properties is
purely technical 33

38. The true connection of Cayley's measure of distance
with non-Euclidean Geometry is that suggested by
Beltrami's Saggio, and worked out by Sir R. Ball, 36

39. Which provides a Euclidean equivalent for every non-
Euclidean proposition, and so removes the
possibility of contradictions in Metageometry 38

40. Klein's elliptic Geometry has not been proved to have a
corresponding variety of space 39

41. The geometrical use of imaginaries, of which Cayley
demanded a philosophical discussion, 41

42. Has a merely technical validity, 42
43. And is capable of giving geometrical results only when

it begins and ends with real points and figures 45
44. We have now seen that projective Geometry is logically

prior to metrical Geometry, but cannot supersede it 46
45. Sophus Lie has applied projective methods to

Helmholtz's formulation of the axioms, and has
shown the axiom of Monodromy to be superfluous 46

46. Metageometry has gradually grown independent of
philosophy, but has grown continually more
interesting to philosophy 50

47. Metrical Geometry has three indispensable axioms, 50
48. Which we shall find to be not results, but conditions, of

measurement, 51



49. And which are nearly equivalent to the three axioms of
projective Geometry

52

50. Both sets of axioms are necessitated, not by facts, but
by logic 52

 

CHAPTER II.
CRITICAL ACCOUNT OF SOME PREVIOUS

PHILOSOPHICAL THEORIES OF GEOMETRY.

51. A criticism of representative modern theories need not
begin before Kant 54

52. Kant's doctrine must be taken, in an argument about
Geometry, on its purely logical side 55

53. Kant contends that since Geometry is apodeictic, space
must be à priori and subjective, while since space is
à priori and subjective, Geometry must be apodeictic 55

54. Metageometry has upset the first line of argument, not
the second 56

55. The second may be attacked by criticizing either the
distinction of synthetic and analytic judgments, or
the first two arguments of the metaphysical
deduction of space 57

56. Modern Logic regards every judgment as both
synthetic and analytic, 57

57. But leaves the à priori, as that which is presupposed in
the possibility of experience 59

58. Kant's first two arguments as to space suffice to prove
some form of externality, but not necessarily
Euclidean space, a necessary condition of experience 60

59. Among the successors of Kant, Herbart alone advanced
the theory of Geometry, by influencing Riemann 62

60. Riemann regarded space as a particular kind of
manifold, i.e. wholly quantitatively

63



61. He therefore unduly neglected the qualitative
adjectives of space

64

62. His philosophy rests on a vicious disjunction 65
63. His definition of a manifold is obscure, 66
64. And his definition of measurement applies only to

space 67
65. Though mathematically invaluable, his view of space

as a manifold is philosophically misleading 69
66. Helmholtz attacked Kant both on the mathematical and

on the psychological side; 70
67. But his criterion of apriority is changeable and often

invalid; 71
68. His proof that non-Euclidean spaces are imaginable is

inconclusive; 72
69. And his assertion of the dependence of measurement on

rigid bodies, which may be taken in three senses, 74
70. Is wholly false if it means that the axiom of

Congruence actually asserts the existence of rigid
bodies, 75

71. Is untrue if it means that the necessary reference of
geometrical propositions to matter renders pure
Geometry empirical, 76

72. And is inadequate to his conclusion if it means, what is
true, that actual measurement involves
approximately rigid bodies 78

73. Geometry deals with an abstract matter, whose physical
properties are disregarded; and Physics must
presuppose Geometry 80

74. Erdmann accepted the conclusions of Riemann and
Helmholtz, 81

75. And regarded the axioms as necessarily successive
steps in classifying space as a species of manifold 82

76. His deduction involves four fallacious assumptions,
namely: 82



77. That conceptions must be abstracted from a series of
instances;

83

78. That all definition is classification; 83
79. That conceptions of magnitude can be applied to space

as a whole; 84
80. And that if conceptions of magnitude could be so

applied, all the adjectives of space would result from
their application 86

81. Erdmann regards Geometry alone as incapable of
deciding on the truth of the axiom of Congruence, 86

82. Which he affirms to be empirically proved by
Mechanics. 88

83. The variety and inadequacy of Erdmann's tests of
apriority 89

84. Invalidate his final conclusions on the theory of
Geometry 90

85. Lotze has discussed two questions in the theory of
Geometry: 93

86. (1) He regards the possibility of non-Euclidean spaces
as suggested by the subjectivity of space, 93

87. And rejects it owing to a mathematical
misunderstanding, 96

88. Having missed the most important sense of their
possibility, 96

89. Which is that they fulfil the logical conditions to which
any form of externality must conform 97

90. (2) He attacks the mathematical procedure of
Metageometry 98

91. The attack begins with a question-begging definition of
parallels 99

92. Lotze maintains that all apparent departures from
Euclid could be physically explained, a view which
really makes Euclid empirical 99

93. His criticism of Helmholtz's analogies rests wholly on 101



mathematical mistakes
94. His proof that space must have three dimensions rests

on neglect of different orders of infinity 104
95. He attacks non-Euclidean spaces on the mistaken

ground that they are not homogeneous 107
96. Lotze's objections fall under four heads 108
97. Two other semi-philosophical objections may be urged, 109
98. One of which, the absence of similarity, has been made

the basis of attack by Delbœuf, 110
99. But does not form a valid ground of objection 111
100. Recent French speculation on the foundations of

Geometry has suggested few new views 112
101. All homogeneous spaces are à priori possible, and the

decision between them is empirical 114
 

CHAPTER III.

SECTION A. THE AXIOMS OF PROJECTIVE

GEOMETRY.
102. Projective Geometry does not deal with magnitude, and

applies to all spaces alike 117
103. It will be found wholly à priori 117
104. Its axioms have not yet been formulated

philosophically 118
105. Coordinates, in projective Geometry, are not spatial

magnitudes, but convenient names for points 118
106. The possibility of distinguishing various points is an

axiom 119
107. The qualitative relations between points, dealt with by

projective Geometry, are presupposed by the
quantitative treatment 119



108. The only qualitative relation between two points is the
straight line, and all straight lines are qualitatively
similar

120

109. Hence follows, by extension, the principle of projective
transformation 121

110. By which figures qualitatively indistinguishable from a
given figure are obtained 122

111. Anharmonic ratio may and must be descriptively
defined 122

112. The quadrilateral construction is essential to the
projective definition of points, 123

113. And can be projectively defined, 124
114. By the general principle of projective transformation 126
115. The principle of duality is the mathematical form of a

philosophical circle, 127
116. Which is an inevitable consequence of the relativity of

space, and makes any definition of the point
contradictory 128

117. We define the point as that which is spatial, but
contains no space, whence other definitions follow 128

118. What is meant by qualitative equivalence in Geometry? 129
119. Two pairs of points on one straight line, or two pairs of

straight lines through one point, are qualitatively
equivalent 129

120. This explains why four collinear points are needed, to
give an intrinsic relation by which the fourth can be
descriptively defined when the first three are given 130

121. Any two projectively related figures are qualitatively
equivalent, i.e. differ in no non-quantitative
conceptual property 131

122. Three axioms are used by projective Geometry, 132
123. And are required for qualitative spatial comparison, 132
124. Which involves the homogeneity, relativity and

passivity of space 133



125. The conception of a form of externality, 134
126. Being a creature of the intellect, can be dealt with by

pure mathematics 134
127. The resulting doctrine of extension will be, for the

moment, hypothetical 135
128. But is rendered assertorical by the necessity, for

experience, of some form of externality 136
129. Any such form must be relational 136
130. And homogeneous 137
131. And the relations constituting it must appear infinitely

divisible 137
132. It must have a finite integral number of dimensions, 139
133. Owing to its passivity and homogeneity 140
134. And to the systematic unity of the world 140
135. A one-dimensional form alone would not suffice for

experience 141
136. Since its elements would be immovably fixed in a

series 142
137. Two positions have a relation independent of other

positions, 143
138. Since positions are wholly defined by mutually

independent relations 143
139. Hence projective Geometry is wholly à priori, 146
140. Though metrical Geometry contains an empirical

element 146

SECTION B. THE AXIOMS OF METRICAL

GEOMETRY.
141. Metrical Geometry is distinct from projective, but has

the same fundamental postulate 147
142. It introduces the new idea of motion, and has three à 148



priori axioms

I. The Axiom of Free Mobility.

143. Measurement requires a criterion of spatial equality 149
144. Which is given by superposition, and involves the

axiom of Free Mobility 150
145. The denial of this axiom involves an action of empty

space on things 151
146. There is a mathematically possible alternative to the

axiom, 152
147. Which, however, is logically and philosophically

untenable 153
148. Though Free Mobility is à priori, actual measurement

is empirical 154
149. Some objections remain to be answered, concerning— 154
150. (1) The comparison of volumes and of Kant's

symmetrical objects 154
151. (2) The measurement of time, where congruence is

impossible 156
152. (3) The immediate perception of spatial magnitude;

and 157
153. (4) The Geometry of non-congruent surfaces 158
154. Free Mobility includes Helmholtz's Monodromy 159
155. Free Mobility involves the relativity of space 159
156. From which, reciprocally, it can be deduced 160
157. Our axiom is therefore à priori in a double sense 160

II. The Axiom of Dimensions.

158. Space must have a finite integral number of dimensions 161
159. But the restriction to three is empirical 162
160. The general axiom follows from the relativity of

position 162



161. The limitation to three dimensions, unlike most
empirical knowledge, is accurate and certain

163

III. The Axiom of Distance.

162. The axiom of distance corresponds, here, to that of the
straight line in projective Geometry 164

163. The possibility of spatial measurement involves a
magnitude uniquely determined by two points, 164

164. Since two points must have some relation, and the
passivity of space proves this to be independent of
external reference 165

165. There can be only one such relation 166
166. This must be measured by a curve joining the two

points, 166
167. And the curve must be uniquely determined by the two

points 167
168. Spherical Geometry contains an exception to this

axiom, 168
169. Which, however, is not quite equivalent to Euclid's 168
170. The exception is due to the fact that two points, in

spherical space, may have an external relation
unaltered by motion, 169

171. Which, however, being a relation of linear magnitude,
presupposes the possibility of linear magnitude 170

172. A relation between two points must be a line joining
them 170

173. Conversely, the existence of a unique line between two
points can be deduced from the nature of a form of
externality, 171

174. And necessarily leads to distance, when quantity is
applied to it 172

175. Hence the axiom of distance, also, is à priori in a
double sense 172



176. No metrical coordinate system can be set up without
the straight line

174

177. No axioms besides the above three are necessary to
metrical Geometry 175

178. But these three are necessary to the direct measurement
of any continuum 176

179. Two philosophical questions remain for a final chapter 177
 

CHAPTER IV.
PHILOSOPHICAL CONSEQUENCES.

180. What is the relation to experience of a form of
externality in general? 178

181. This form is the class-conception, containing every
possible intuition of externality; and some such
intuition is necessary to experience 178

182. What relation does this view bear to Kant's? 179
183. It is less psychological, since it does not discuss

whether space is given in sensation, 180
184. And maintains that not only space, but any form of

externality which renders experience possible, must
be given in sense-perception 181

185. Externality should mean, not externality to the Self, but
the mutual externality of presented things 181

186. Would this be unknowable without a given form of
externality? 182

187. Bradley has proved that space and time preclude the
existence of mere particulars, 182

188. And that knowledge requires the This to be neither
simple nor self-subsistent 183

189. To prove that experience requires a form of externality,
I assume that all knowledge requires the recognition
of identity in difference 184



190. Such recognition involves time 184
191. And some other form giving simultaneous diversity 185
192. The above argument has not deduced sense-perception

from the categories, but has shown the former,
unless it contains a certain element, to be
unintelligible to the latter 186

193. How to account for the realization of this element, is a
question for metaphysics 187

194. What are we to do with the contradictions in space? 188
195. Three contradictions will be discussed in what follows 188
196. (1) The antinomy of the Point proves the relativity of

space, 189
197. And shows that Geometry must have some reference to

matter, 190
198. By which means it is made to refer to spatial order, not

to empty space 191
199. The causal properties of matter are irrelevant to

Geometry, which must regard it as composed of
unextended atoms, by which points are replaced 191

200. (2) The circle in defining straight lines and planes is
overcome by the same reference to matter 192

201. (3) The antinomy that space is relational and yet more
than relational, 193

202. Seems to depend on the confusion of empty space with
spatial order 193

203. Kant regarded empty space as the subject-matter of
Geometry, 194

204. But the arguments of the Aesthetic are inconclusive on
this point, 195

205. And are upset by the mathematical antinomies, which
prove that spatial order should be the subject-matter
of Geometry 196

206. The apparent thinghood of space is a psychological
illusion, due to the fact that spatial relations are

196



immediately given
207. The apparent divisibility of spatial relations is either an

illusion, arising out of empty space, or the
expression of the possibility of quantitatively
different spatial relations 197

208. Externality is not a relation, but an aspect of relations.
Spatial order, owing to its reference to matter, is a
real relation 198

209. Conclusion 199



IN TRO D U CTIO N .
  

O U R  P R O B L E M  D E F I N E D  B Y  I T S  R E L AT I O N S  T O  L O G I C ,
P S Y C H O L O G Y  A N D  M AT H E M AT I C S .

1. Geometry, throughout the 17th and 18th centuries, remained, in the
war against empiricism, an impregnable fortress of the idealists. Those
who held—as was generally held on the Continent—that certain
knowledge, independent of experience, was possible about the real world,
had only to point to Geometry: none but a madman, they said, would throw
doubt on its validity, and none but a fool would deny its objective
reference. The English Empiricists, in this matter, had, therefore, a
somewhat difficult task; either they had to ignore the problem, or if, like
Hume and Mill, they ventured on the assault, they were driven into the
apparently paradoxical assertion that Geometry, at bottom, had no
certainty of a different kind from that of Mechanics—only the perpetual
presence of spatial impressions, they said, made our experience of the
truth of the axioms so wide as to seem absolute certainty.

Here, however, as in many other instances, merciless logic drove these
philosophers, whether they would or no, into glaring opposition to the
common sense of their day. It was only through Kant, the creator of
modern Epistemology, that the geometrical problem received a modern
form. He reduced the question to the following hypotheticals: If Geometry
has apodeictic certainty, its matter, i.e. space, must be à priori, and as such
must be purely subjective; and conversely, if space is purely subjective,
Geometry must have apodeictic certainty. The latter hypothetical has more
weight with Kant, indeed it is ineradicably bound up with his whole
Epistemology; nevertheless it has, I think, much less force than the former.
Let us accept, however, for the moment, the Kantian formulation, and
endeavour to give precision to the terms à priori and subjective.



2. One of the great difficulties, throughout this controversy, is the
extremely variable use to which these words, as well as the word
empirical, are put by different authors. To Kant, who was nothing of a
psychologist, à priori and subjective were almost interchangeable terms[1];
in modern usage there is, on the whole, a tendency to confine the word
subjective to Psychology, leaving à priori to do duty for Epistemology. If
we accept this differentiation, we may set up, corresponding to the
problems of these two sciences, the following provisional definitions: à
priori applies to any piece of knowledge which, though perhaps elicited by
experience, is logically presupposed in experience: subjective applies to
any mental state whose immediate cause lies, not in the external world,
but within the limits of the subject. The latter definition, of course, is
framed exclusively for Psychology: from the point of view of physical
Science all mental states are subjective. But for a Science whose matter,
strictly speaking, is only mental states, we require, if we are to use the
word to any purpose, some differentia among mental states, as a mark of a
more special subjectivity on the part of those to which this term is applied.

Now the only mental states whose immediate causes lie in the external
world are sensations. A pure sensation is, of course, an impossible
abstraction—we are never wholly passive under the action of an external
stimulus—but for the purposes of Psychology the abstraction is a useful
one. Whatever, then, is not sensation, we shall, in Psychology, call
subjective. It is in sensation alone that we are directly affected by the
external world, and only here does it give us direct information about
itself.

3. Let us now consider the epistemological question, as to the sort of
knowledge which can be called à priori. Here we have nothing to do—in
the first instance, at any rate—with the cause or genesis of a piece of
knowledge; we accept knowledge as a datum to be analysed and classified.
Such analysis will reveal a formal and a material element in knowledge.
The formal element will consist of postulates which are required to make
knowledge possible at all, and of all that can be deduced from these
postulates; the material element, on the other hand, will consist of all that
comes to fill in the form given by the formal postulates—all that is
contingent or dependent on experience, all that might have been otherwise



without rendering knowledge impossible. We shall then call the formal
element à priori, the material element empirical.

4. Now what is the connection between the subjective and the à priori?
It is a connection, obviously—if it exists at all—from the outside, i.e. not
deducible directly from the nature of either, but provable—if it can be
proved—only by a general view of the conditions of both. The question,
what knowledge is à priori, must, on the above definition, depend on a
logical analysis of knowledge, by which the conditions of possible
experience may be revealed; but the question, what elements of a
cognitive state are subjective, is to be investigated by pure Psychology,
which has to determine what, in our perceptions, belongs to sensation, and
what is the work of thought or of association. Since, then, these two
questions belong to different sciences, and can be settled independently,
will it not be wise to conduct the two investigations separately? To decree
that the à priori shall always be subjective, seems dangerous, when we
reflect that such a view places our results, as to the à priori, at the mercy
of empirical psychology. How serious this danger is, the controversy as to
Kant's pure intuition sufficiently shows.

5. I shall, therefore, throughout the present Essay, use the word à priori
without any psychological implication. My test of apriority will be purely
logical: Would experience be impossible, if a certain axiom or postulate
were denied? Or, in a more restricted sense, which gives apriority only
within a particular science: Would experience as to the subject-matter of
that science be impossible, without a certain axiom or postulate? My
results also, therefore, will be purely logical. If Psychology declares that
some things, which I have declared à priori, are not subjective, then,
failing an error of detail in my proofs, the connection of the à priori and
the subjective, so far as those things are concerned, must be given up.
There will be no discussion, accordingly, throughout this Essay, of the
relation of the à priori to the subjective—a relation which cannot
determine what pieces of knowledge are à priori, but rather depends on
that determination, and belongs, in any case, rather to Metaphysics than to
Epistemology.

6. As I have ventured to use the word à priori in a slightly
unconventional sense, I will give a few elucidatory remarks of a general
nature.



The à priori, since Kant at any rate, has generally stood for the
necessary or apodeictic element in knowledge. But modern logic has
shown that necessary propositions are always, in one aspect at least,
hypothetical. There may be, and usually is, an implication that the
connection, of which necessity is predicated, has some existence, but still,
necessity always points beyond itself to a ground of necessity, and asserts
this ground rather than the actual connection. As Bradley points out,
"arsenic poisons" remains true, even if it is poisoning no one. If, therefore,
the à priori in knowledge be primarily the necessary, it must be the
necessary on some hypothesis, and the ground of necessity must be
included as à priori. But the ground of necessity is, so far as the necessary
connection in question can show, a mere fact, a merely categorical
judgment. Hence necessity alone is an insufficient criterion of apriority.

To supplement this criterion, we must supply the hypothesis or ground,
on which alone the necessity holds, and this ground will vary from one
science to another, and even, with the progress of knowledge, in the same
science at different times. For as knowledge becomes more developed and
articulate, more and more necessary connections are perceived, and the
merely categorical truths, though they remain the foundation of apodeictic
judgments, diminish in relative number. Nevertheless, in a fairly advanced
science such as Geometry, we can, I think, pretty completely supply the
appropriate ground, and establish, within the limits of the isolated science,
the distinction between the necessary and the merely assertorical.

7. There are two grounds, I think, on which necessity may be sought
within any science. These may be (very roughly) distinguished as the
ground which Kant seeks in the Prolegomena, and that which he seeks in
the Pure Reason. We may start from the existence of our science as a fact,
and analyse the reasoning employed with a view to discovering the
fundamental postulate on which its logical possibility depends; in this
case, the postulate, and all which follows from it alone, will be à priori. Or
we may accept the existence of the subject-matter of our science as our
basis of fact, and deduce dogmatically whatever principles we can from
the essential nature of this subject-matter. In this latter case, however, it is
not the whole empirical nature of the subject-matter, as revealed by the
subsequent researches of our science, which forms our ground; for if it
were, the whole science would, of course, be à priori. Rather it is that



element, in the subject-matter, which makes possible the branch of
experience dealt with by the science in question[2]. The importance of this
distinction will appear more clearly as we proceed[3].

8. These two grounds of necessity, in ultimate analysis, fall together.
The methods of investigation in the two cases differ widely, but the results
cannot differ. For in the first case, by analysis of the science, we discover
the postulate on which alone its reasonings are possible. Now if reasoning
in the science is impossible without some postulate, this postulate must be
essential to experience of the subject-matter of the science, and thus we
get the second ground. Nevertheless, the two methods are useful as
supplementing one another, and the first, as starting from the actual
science, is the safest and easiest method of investigation, though the
second seems the more convincing for exposition.

9. The course of my argument, therefore, will be as follows: In the first
chapter, as a preliminary to the logical analysis of Geometry, I shall give a
brief history of the rise and development of non-Euclidean systems. The
second chapter will prepare the ground for a constructive theory of
Geometry, by a criticism of some previous philosophical views; in this
chapter, I shall endeavour to exhibit such views as partly true, partly false,
and so to establish, by preliminary polemics, the truth of such parts of my
own theory as are to be found in former writers. A large part of this theory,
however, cannot be so introduced, since the whole field of projective
Geometry, so far as I am aware, has been hitherto unknown to
philosophers. Passing, in the third chapter, from criticism to construction,
I shall deal first with projective Geometry. This, I shall maintain, is
necessarily true of any form of externality, and is, since some such form is
necessary to experience, completely à priori. In metrical Geometry,
however, which I shall next consider, the axioms will fall into two classes:
(1) Those common to Euclidean and non-Euclidean spaces. These will be
found, on the one hand, essential to the possibility of measurement in any
continuum, and on the other hand, necessary properties of any form of
externality with more than one dimension. They will, therefore, be
declared à priori. (2) Those axioms which distinguish Euclidean from
non-Euclidean spaces. These will be regarded as wholly empirical. The
axiom that the number of dimensions is three, however, though empirical,
will be declared, since small errors are here impossible, exactly and



certainly true of our actual world; while the two remaining axioms, which
determine the value of the space-constant, will be regarded as only
approximately known, and certain only within the errors of observation[4].
The fourth chapter, finally, will endeavour to prove, what was assumed in
Chapter III., that some form of externality is necessary to experience, and
will conclude by exhibiting the logical impossibility, if knowledge of such
a form is to be freed from contradictions, of wholly abstracting this
knowledge from all reference to the matter contained in the form.

I shall hope to have touched, with this discussion, on all the main points
relating to the Foundations of Geometry.

FOOTNOTES:
[1] Cf. Erdmann, Axiome der Geometrie, p. 111: "Für Kant sind Apriorität und ausschliessliche
Subjectivität allerdings Wechselbegriffe."

[2] I use "experience" here in the widest possible sense, the sense in which the word is used by
Bradley.

[3] Where the branch of experience in question is essential to all experience, the resulting
apriority may be regarded as absolute; where it is necessary only to some special science, as
relative to that science.

[4] I have given no account of these empirical proofs, as they seem to be constituted by the
whole body of physical science. Everything in physical science, from the law of gravitation to
the building of bridges, from the spectroscope to the art of navigation, would be profoundly
modified by any considerable inaccuracy in the hypothesis that our actual space is Euclidean.
The observed truth of physical science, therefore, constitutes overwhelming empirical evidence
that this hypothesis is very approximately correct, even if not rigidly true.



CH A PTER I .
  

A  S H O R T  H I S T O R Y  O F  M E TA G E O M E T R Y.

10. When a long established system is attacked, it usually happens that
the attack begins only at a single point, where the weakness of the
established doctrine is peculiarly evident. But criticism, when once
invited, is apt to extend much further than the most daring, at first, would
have wished.

"First cut the liquefaction, what comes last,
But Fichte's clever cut at God himself?"

So it has been with Geometry. The liquefaction of Euclidean orthodoxy is
the axiom of parallels, and it was by the refusal to admit this axiom
without proof that Metageometry began. The first effort in this direction,
that of Legendre[5], was inspired by the hope of deducing this axiom from
the others—a hope which, as we now know, was doomed to inevitable
failure. Parallels are defined by Legendre as lines in the same plane, such
that, if a third line cut them, it makes the sum of the interior and opposite
angles equal to two right angles. He proves without difficulty that such
lines would not meet, but is unable to prove that non-parallel lines in a
plane must meet. Similarly he can prove that the sum of the angles of a
triangle cannot exceed two right angles, and that if any one triangle has a
sum equal to two right angles, all triangles have the same sum; but he is
unable to prove the existence of this one triangle.

11. Thus Legendre's attempt broke down; but mere failure could prove
nothing. A bolder method, suggested by Gauss, was carried out by
Lobatchewsky and Bolyai[6]. If the axiom of parallels is logically
deducible from the others, we shall, by denying it and maintaining the rest,
be led to contradictions. These three mathematicians, accordingly,
attacked the problem indirectly: they denied the axiom of parallels, and
yet obtained a logically consistent Geometry. They inferred that the axiom
was logically independent of the others, and essential to the Euclidean
system. Their works, being all inspired by this motive, may be



distinguished as forming the first period in the development of
Metageometry.

The second period, inaugurated by Riemann, had a much deeper import:
it was largely philosophical in its aims and constructive in its methods. It
aimed at no less than a logical analysis of all the essential axioms of
Geometry, and regarded space as a particular case of the more general
conception of a manifold. Taking its stand on the methods of analytical
metrical Geometry, it established two non-Euclidean systems, the first that
of Lobatchewsky, the second—in which the axiom of the straight line, in
Euclid's form, was also denied—a new variety, by analogy called
spherical. The leading conception in this period is the measure of
curvature, a term invented by Gauss, but applied by him only to surfaces.
Gauss had shown that free mobility on surfaces was only possible when
the measure of curvature was constant; Riemann and Helmholtz extended
this proposition to n dimensions, and made it the fundamental property of
space.

In the third period, which begins with Cayley, the philosophical motive,
which had moved the first pioneers, is less apparent, and is replaced by a
more technical and mathematical spirit. This period is chiefly
distinguished from the second, in a mathematical point of view, by its
method, which is projective instead of metrical. The leading mathematical
conception here is the Absolute (Grundgebild), a figure by relation to
which all metrical properties become projective. Cayley's work, which was
very brief, and attracted little attention, has been perfected and elaborated
by F. Klein, and through him has found general acceptance. Klein has
added to the two kinds of non-Euclidean Geometry already known, a third,
which he calls elliptic; this third kind closely resembles Helmholtz's
spherical Geometry, but is distinguished by the important difference that,
in it, two straight lines meet in only one point[7]. The distinctive mark of
the spaces represented by both is that, like the surface of a sphere, they are
finite but unbounded. The reduction of metrical to projective properties, as
will be proved hereafter, has only a technical importance; at the same
time, projective Geometry is able to deal directly with those purely
descriptive or qualitative properties of space which are common to Euclid
and Metageometry alike. The third period has, therefore, great
philosophical importance, while its method has, mathematically, much



greater beauty and unity than that of the second; it is able to treat all kinds
of space at once, so that every symbolic proposition is, according to the
meaning given to the symbols, a proposition in whichever Geometry we
choose. This has the advantage of proving that further research cannot lead
to contradictions in non-Euclidean systems, unless it at the same moment
reveals contradictions in Euclid. These systems, therefore, are logically as
sound as that of Euclid himself.

After this brief sketch of the characteristics of the three periods, I will
proceed to a more detailed account. It will be my aim to avoid, as far as
possible, all technical mathematics, and bring into relief only those
fundamental points in the mathematical development, which seem of
logical or philosophical importance.

First Period.

12. The originator of the whole system, Gauss, does not appear, as
regards strictly non-Euclidean Geometry, in any of his hitherto published
papers, to have given more than results; his proofs remain unknown to us.
Nevertheless he was the first to investigate the consequences of denying
the axiom of parallels[8], and in his letters he communicated these
consequences to some of his friends, among whom was Wolfgang Bolyai.
The first mention of the subject in his letters occurs when he was only 18;
four years later, in 1799, writing to W. Bolyai, he enunciates the important
theorem that, in hyperbolic Geometry, there is a maximum to the area of a
triangle. From later writings it appears that he had worked out a system
nearly, if not quite, as complete as those of Lobatchewsky and Bolyai[9].

It is important to remember, however, that Gauss's work on curvature,
which was published, laid the foundation for the whole method of the
second period, and was undertaken, according to Riemann and
Helmholtz[10], with a view to an (unpublished) investigation of the
foundations of Geometry. His work in this direction will, owing to its
method, be better treated of under the second period, but it is interesting to
observe that he stood, like many pioneers, at the head of two tendencies
which afterwards diverged.

13. Lobatchewsky, a professor in the University of Kasan, first
published his results, in their native Russian, in the proceedings of that



learned body for the years 1829–1830. Owing to this double obscurity of
language and place, they attracted little attention, until he translated them
into French[11] and German[12]: even then, they do not appear to have
obtained the notice they deserved, until, in 1868, Beltrami unearthed the
article in Crelle, and made it the theme of a brilliant interpretation.

In the introduction to his little German book, Lobatchewsky laments the
slight interest shown in his writings by his compatriots, and the inattention
of mathematicians, since Legendre's abortive attempt, to the difficulties in
the theory of parallels. The body of the work begins with the enunciation
of several important propositions which hold good in the system proposed
as well as in Euclid: of these, some are in any case independent of the
axiom of parallels, while others are rendered so by substituting, for the
word "parallel," the phrase "not intersecting, however far produced." Then
follows a definition, intentionally framed so as to contradict Euclid's:
With respect to a given straight line, all others in the same plane may be
divided into two classes, those which cut the given straight line, and those
which do not cut it; a line which is the limit between the two classes is
called parallel to the given straight line. It follows that, from any external
point, two parallels can be drawn, one in each direction. From this
starting-point, by the Euclidean synthetic method, a series of propositions
are deduced; the most important of these is, that in a triangle the sum of
the angles is always less than, or always equal to two right angles, while in
the latter case the whole system becomes orthodox. A certain analogy with
spherical Geometry—whose meaning and extent will appear later—is also
proved, consisting roughly in the substitution of hyperbolic for circular
functions.

14. Very similar is the system of Johann Bolyai, so similar, indeed, as to
make the independence of the two works, though a well-authenticated fact,
seem all but incredible. Johann Bolyai first published his results in 1832,
in an appendix to a work by his father Wolfgang, entitled; "Appendix,
scientiam spatii absolute veram exhibens: a veritate aut falsitate
Axiomatis XI. Euclidei (a priori haud unquam decidenda) independentem;
adjecta ad casum falsitatis, quadratura circuli geometrica." Gauss, whose
bosom friend he became at college and remained through life, was, as we
have seen, the inspirer of Wolfgang Bolyai, and used to say that the latter
was the only man who appreciated his philosophical speculations on the



axioms of Geometry; nevertheless, Wolfgang appears to have left to his
son Johann the detailed working out of the hyperbolic system. The works
of both the Bolyai are very rare, and their method and results are known to
me only through the renderings of Frischauf and Halsted[13]. Both as to
method and as to results, the system is very similar to Lobatchewsky's, so
that neither need detain us here. Only the initial postulates, which are
more explicit than Lobatchewsky's, demand a brief attention. Frischauf's
introduction, which has a philosophical and Newtonian air, begins by
setting forth that Geometry deals with absolute (empty) space, obtained by
abstracting from the bodies in it, that two figures are called congruent
when they differ only in position, and that the axiom of Congruence is
indispensable in all determination of spatial magnitudes. Congruence was
to refer to geometrical bodies, with none of the properties of ordinary
bodies except impenetrability (Erdmann, Axiome der Geometrie, p. 26). A
straight line is defined as determined by two of its points[14], and a plane
as determined by three. These premisses, with a slight exception as to the
straight line, we shall hereafter find essential to every Geometry. I have
drawn attention to them, as it is often supposed that non-Euclideans deny
the axiom of Congruence, which, here and elsewhere, is never the case.
The stress laid on this axiom by Bolyai is probably due to the influence of
Gauss, whose work on the curvature of surfaces laid the foundation for the
use made of congruence by Helmholtz.

15. It is important to remember that, throughout the period we have just
reviewed, the purpose of hyperbolic Geometry is indirect: not the truth of
the latter, but the logical independence of the axiom of parallels from the
rest, is the guiding motive of the work. If, by denying the axiom of
parallels while retaining the rest, we can obtain a system free from logical
contradictions, it follows that the axiom of parallels cannot be implicitly
contained in the others. If this be so, attempts to dispense with the axiom,
like Legendre's, cannot be successful; Euclid must stand or fall with the
suspected axiom. Of course, it remained possible that, by further
development, latent contradictions might have been revealed in these
systems. This possibility, however, was removed by the more direct and
constructive work of the second period, to which we must now turn our
attention.



Second Period.

16. The work of Lobatchewsky and Bolyai remained, for nearly a
quarter of a century, without issue—indeed, the investigations of Riemann
and Helmholtz, when they came, appear to have been inspired, not by
these men, but rather by Gauss[15] and Herbart. We find, accordingly, very
great difference, both of aim and method, between the first period and the
second. The former, beginning with a criticism of one point in Euclid's
system, preserved his synthetic method, while it threw over one of his
axioms. The latter, on the contrary, being guided by a philosophical rather
than a mathematical spirit, endeavoured to classify the conception of
space as a species of a more general conception: it treated space
algebraically, and the properties it gave to space were expressed in terms,
not of intuition, but of algebra. The aim of Riemann and Helmholtz was to
show, by the exhibition of logically possible alternatives, the empirical
nature of the received axioms. For this purpose, they conceived space as a
particular case of a manifold, and showed that various relations of
magnitude (Massverhältnisse) were mathematically possible in an
extended manifold. Their philosophy, which seems to me not always
irreproachable, will be discussed in Chapter II.; here, while it is important
to remember the philosophical motive of Riemann and Helmholtz, we
shall confine our attention to the mathematical side of their work. In so
doing, while we shall, I fear, somewhat maim the system of their thoughts,
we shall secure a closer unity of subject, and a more compact account of
the purely mathematical development. But there is, in my opinion, a
further reason for separating their philosophy from their mathematics.
While their philosophical purpose was, to prove that all the axioms of
Geometry are empirical, and that a different content of our experience
might have changed them all, the unintended result of their mathematical
work was, if I am not mistaken, to afford material for an à priori proof of
certain axioms. These axioms, though they believed them to be
unnecessary, were always introduced in their mathematical works, before
laying the foundations of non-Euclidean systems. I shall contend, in
Chapter III., that this retention was logically inevitable, and was not
merely due, as they supposed, to a desire for conformity with experience.
If I am right in this, there is a divergence between Riemann and Helmholtz
the philosophers, and Riemann and Helmholtz the mathematicians. This



divergence makes it the more desirable to trace the mathematical
development apart from the accompanying philosophy.

17. Riemann's epoch-making work, "Ueber die Hypothesen, welche der
Geometrie zu Grande liegen[16]", was written, and read to a small circle, in
1854; owing, however, to some changes which he desired to make in it, it
remained unpublished till 1867, when it was published by his executors.
The two fundamental conceptions, on whose invention rests the historic
importance of this dissertation, are that of a manifold, and that of the
measure of curvature of a manifold. The former conception serves a
mainly philosophical purpose, and is designed, principally, to exhibit
space as an instance of a more general conception. On this aspect of the
manifold, I shall have much to say in Chapter II.; its mathematical aspect,
which alone concerns us here, is less complicated and less fruitful of
controversy. The latter conception also serves a double purpose, but its
mathematical use is the more prominent. We will consider these two
conceptions successively.

18. (1) Conception of a manifold[17]. The general purpose of Riemann's
dissertation is, to exhibit the axioms as successive steps in the
classification of the species space. The axioms of Geometry, like the
marks of a scholastic definition, appear as successive determinations of
class-conceptions, ending with Euclidean space. We have thus, from the
analytical point of view, about as logical and precise a formulation as can
be desired—a formulation in which, from its classificatory character, we
seem certain of having nothing superfluous or redundant, and obtain the
axioms explicitly in the most desirable form, namely as adjectives of the
conception of space. At the same time, it is a pity that Riemann, in
accordance with the metrical bias of his time, regarded space as primarily
a magnitude[18], or assemblage of magnitudes, in which the main problem
consists in assigning quantities to the different elements or points, without
regard to the qualitative nature of the quantities assigned. Considerable
obscurity thus arises as to the whole nature of magnitude[19]. This view of
Geometry underlies the definition of the manifold, as the general
conception of which space forms a special case. This definition, which is
not very clear, may be rendered as follows.



19. Conceptions of magnitude, according to Riemann, are possible there
only, where we have a general conception, capable of various
determinations (Bestimmungsweisen). The various determinations of such
a conception together form a manifold, which is continuous or discrete,
according as the passage from one determination to another is continuous
or discrete. Particular bits of a manifold, or quanta, can be compared by
counting when discrete, and by measurement when continuous.
"Measurement consists in a superposition of the magnitudes to be
compared. If this be absent, magnitudes can only be compared when one is
part of another, and then only the more or less, not the how much, can be
decided" (p. 256). We thus reach the general conception of a manifold of
several dimensions, of which space and colours are mentioned as special
cases. To the absence of this conception Riemann attributes the "obscurity"
which, on the subject of the axioms, "lasted from Euclid to Legendre" (p.
254). And Riemann certainly has succeeded, from an algebraic point of
view, in exhibiting, far more clearly than any of his predecessors, the
axioms which distinguish spatial quantity from other quantities with
which mathematics is conversant. But by the assumption, from the start,
that space can be regarded as a quantity, he has been led to state the
problem as: What sort of magnitude is space? rather than: What must
space be in order that we may be able to regard it as a magnitude at all? He
does not realise, either—indeed in his day there were few who realized—
that an elaborate Geometry is possible which does not deal with space as a
quantity at all. His definition of space as a species of manifold, therefore,
though for analytical purposes it defines, most satisfactorily, the nature of
spatial magnitudes, leaves obscure the true ground for this nature, which
lies in the nature of space as a system of relations, and is anterior to the
possibility of regarding it as a system of magnitudes at all.

But to proceed with the mathematical development of Riemann's ideas.
We have seen that he declared measurement to consist in a superposition
of the magnitudes to be compared. But in order that this may be a possible
means of determining magnitudes, he continues, these magnitudes must be
independent of their position in the manifold (p. 259). This can occur, he
says, in several ways, as the simplest of which, he assumes that the lengths
of lines are independent of their position. One would be glad to know what
other ways are possible: for my part, I am unable to imagine any other
hypothesis on which magnitude would be independent of place. Setting



this aside, however, the problem, owing to the fact that measurement
consists in superposition, becomes identical with the determination of the
most general manifold in which magnitudes are independent of place. This
brings us to Riemann's other fundamental conception, which seems to me
even more fruitful than that of a manifold.

20. (2) Measure of curvature. This conception is due to Gauss, but was
applied by him only to surfaces; the novelty in Riemann's dissertation was
its extension to a manifold of n dimensions. This extension, however, is
rather briefly and obscurely expressed, and has been further obscured by
Helmholtz's attempts at popular exposition. The term curvature, also, is
misleading, so that the phrase has been the source of more
misunderstanding, even among mathematicians, than any other in
Pangeometry. It is often forgotten, in spite of Helmholtz's explicit
statement[20], that the "measure of curvature" of an n-dimensional
manifold is a purely analytical expression, which has only a symbolic
affinity to ordinary curvature. As applied to three-dimensional space, the
implication of a four-dimensional "plane" space is wholly misleading; I
shall, therefore, generally use the term space-constant instead[21].
Nevertheless, as the conception grew, historically, out of that of curvature,
I will give a very brief exposition of the historical development of theories
of curvature.

Just as the notion of length was originally derived from the straight line,
and extended to other curves by dividing them into infinitesimal straight
lines, so the notion of curvature was derived from the circle, and extended
to other curves by dividing them into infinitesimal circular arcs. Curvature
may be regarded, originally, as a measure of the amount by which a curve
departs from a straight line; in a circle, which is similar throughout, this
amount is evidently constant, and is measured by the reciprocal of the
radius. But in all other curves, the amount of curvature varies from point
to point, so that it cannot be measured without infinitesimals. The measure
which at once suggests itself is, the curvature of the circle most nearly
coinciding with the curve at the point considered. Since a circle is
determined by three points, this circle will pass through three consecutive
points of the curve. We have thus defined the curvature of any curve, plane
or tortuous; for, since any three points lie in a plane, such a circle can
always be described.



If we now pass to a surface, what we want is, by analogy, a measure of
its departure from a plane. The curvature, as above defined, has become
indeterminate, for through any point of the surface we can draw an infinite
number of arcs, which will not, in general, all have the same curvature. Let
us, then, draw all the geodesics joining the point in question to
neighbouring points of the surface in all directions. Since these arcs form
a singly infinite manifold, there will be among them, if they have not all
the same curvature, one arc of maximum, and one of minimum
curvature[22]. The product of these maximum and minimum curvatures is
called the measure of curvature of the surface at the point under
consideration. To illustrate by a few simple examples: on a sphere, the
curvatures of all such lines are equal to the reciprocal of the radius of the
sphere, hence the measure of curvature everywhere is the square of the
reciprocal of the radius of the sphere. On any surface, such as a cone or a
cylinder, on which straight lines can be drawn, these have no curvature, so
that the measure of curvature is everywhere zero—this is the case, in
particular, with the plane. In general, however, the measure of curvature of
a surface varies from point to point.

Gauss, the inventor of this conception[23], proved that, in order that two
surfaces may be developable upon each other—i.e. may be such that one
can be bent into the shape of the other without stretching or tearing—it is
necessary that the two surfaces should have equal measures of curvature at
corresponding points. When this is the case, every figure which is possible
on the one is, in general, possible on the other, and the two have
practically the same Geometry[24]. As a corollary, it follows that a
necessary condition, for the free mobility of figures on any surface, is the
constancy of the measure of curvature[25]. This condition was proved to be
sufficient, as well as necessary, by Minding[26].

21. So far, all has been plain sailing—we have been dealing with purely
geometrical ideas in a purely geometrical manner—but we have not, as
yet, found any sense of the measure of curvature, in which it can be
extended to space, still less to an n-dimensional manifold. For this
purpose, we must examine Gauss's method, which enables us to determine
the measure of curvature of a surface at any point as an inherent property,
quite independent of any reference to the third dimension.



The method of determining the measure of curvature from within is,
briefly, as follows: If any point on the surface be determined by two
coordinates, u, v, then small arcs of the surface are given by the formula

ds2 = Edu2 + 2Fdu dv + Gdv2,

where E, F, G are, in general, functions of u, v.[27] From this formula
alone, without reference to any space outside the surface, we can
determine the measure of curvature at the point u, v, as a function of E, F,
G and their differentials with respect to u and v. Thus we may regard the
measure of curvature of a surface as an inherent property, and the above
geometrical definition, which involved a reference to the third dimension,
may be dropped. But at this point a caution is necessary. It will appear in
Chap. III. (§ 176), that it is logically impossible to set up a precise
coordinate system, in which the coordinates represent spatial magnitudes,
without the axiom of Free Mobility, and this axiom, as we have just seen,
holds on surfaces only when the measure of curvature is constant. Hence
our definition of the measure of curvature will only be really free from
reference to the third dimension, when we are dealing with a surface of
constant measure of curvature—a point which Riemann entirely
overlooks. This caution, however, applies only in space, and if we take the
coordinate system as presupposed in the conception of a manifold, we may
neglect the caution altogether—while remembering that the possibility of
a coordinate system in space involves axioms to be investigated later. We
can thus see how a meaning might be found, without reference to any
higher dimension, for a constant measure of curvature of three-
dimensional space, or for any measure of curvature of an n-dimensional
manifold in general.

22. Such a meaning is supplied by Riemann's dissertation, to which,
after this long digression, we can now return. We may define a continuous
manifold as any continuum of elements, such that a single element is
defined by n continuously variable magnitudes. This definition does not
really include space, for coordinates in space do not define a point, but its
relations to the origin, which is itself arbitrary. It includes, however, the
analytical conception of space with which Riemann deals, and may,
therefore, be allowed to stand for the moment. Riemann then assumes that
the difference—or distance, as it may be loosely called—between any two



elements is comparable, as regards magnitude, to the difference between
any other two. He assumes further, what it is Helmholtz's merit to have
proved, that the difference ds between two consecutive elements can be
expressed as the square root of a quadratic function of the differences of
the coordinates: i.e.

ds2 = Σ1
n Σ1

n aik dxi.dxk ,

where the coefficients aik are, in general, functions of the coordinates x1 x2

... xn. [28] The question is: How are we to obtain a definition of the measure
of curvature out of this formula? It is noticeable, in the first place, that,
just as in a surface we found an infinite number of radii of curvature at a
point, so in a manifold of three or more dimensions we must find an
infinite number of measures of curvature at a point, one for every two-
dimensional manifold passing through the point, and contained in the
higher manifold. What we have first to do, therefore, is to define such two-
dimensional manifolds. They must consist, as we saw on the surface, of a
singly infinite series of geodesics through the point. Now a geodesic is
completely determined by one point and its direction at that point, or by
one point and the next consecutive point. Hence a geodesic through the
point considered is determined by the ratios of the increments of
coordinates, dx1 dx2 ... dxn. Suppose we have two such geodesics, in which
the i′th increments are respectively d′xi and d″xi. Then all the geodesics
given by

dxi = λ′d′xi + λ″d″xi



form a singly infinite series, since they contain
one parameter, namely λ′: λ″. Such a series of
geodesics, therefore, must form a two-
dimensional manifold, with a measure of
curvature in the ordinary Gaussian sense. This
measure of curvature can be determined from the
above formula for the elementary arc, by the help of Gauss's general
formula alluded to above. We thus obtain an infinite number of measures

of curvature at a point, but from n.(n – 1)
2  of these, the rest can be deduced

(Riemann, Gesammelte Werke, p. 262). When all the measures of
curvature at a point are constant, and equal to all the measures of
curvature at any other point, we get what Riemann calls a manifold of
constant curvature. In such a manifold free mobility is possible, and
positions do not differ intrinsically from one another. If a be the measure
of curvature, the formula for the arc becomes, in this case,

ds2 = Σdx2 / (1 + a4 Σx2)2
.

In this case only, as I pointed out above, can the term "measure of
curvature" be properly applied to space without reference to a higher
dimension, since free mobility is logically indispensable to the existence
of quantitative or metrical Geometry.

23. The mathematical result of Riemann's dissertation may be summed
up as follows. Assuming it possible to apply magnitude to space, i.e. to
determine its elements and figures by means of algebraical quantities, it
follows that space can be brought under the conception of a manifold, as a
system of quantitatively determinable elements. Owing, however, to the
peculiar nature of spatial measurement, the quantitative determination of
space demands that magnitudes shall be independent of place—in so far as
this is not the case, our measurement will be necessarily inaccurate. If we
now assume, as the quantitative relation of distance between two elements,
the square root of a quadratic function of the coordinates—a formula
subsequently proved by Helmholtz and Lie—then it follows, since
magnitudes are to be independent of place, that space must, within the
limits of observation, have a constant measure of curvature, or must, in



other words, be homogeneous in all its parts. In the infinitesimal, Riemann
says (p. 267), observation could not detect a departure from constancy on
the part of the measure of curvature; but he makes no attempt to show how
Geometry could remain possible under such circumstances, and the only
Geometry he has constructed is based entirely on Free Mobility. I shall
endeavour to prove, in Chapter III., that any metrical Geometry, which
should endeavour to dispense with this axiom, would be logically
impossible. At present I will only point out that Riemann, in spite of his
desire to prove that all the axioms can be dispensed with, has nevertheless,
in his mathematical work, retained three fundamental axioms, namely,
Free Mobility, the finite integral number of dimensions, and the axiom
that two points have a unique relation, namely distance. These, as we shall
see hereafter, are retained, in actual mathematical work, by all metrical
Metageometers, even when they believe, like Riemann and Helmholtz,
that no axioms are philosophically indispensable.

24. Helmholtz, the historically nearest follower of Riemann, was guided
by a similar empirical philosophy, and arrived independently at a very
similar method of formulating the axioms. Although Helmholtz published
nothing on the subject until after Riemann's death, he had then only just
seen Riemann's dissertation (which was published posthumously), and had
worked out his results, so far as they were then completed, in entire
independence both of Riemann and of Lobatchewsky. Helmholtz is by far
the most widely read of all writers on Metageometry, and his writings,
almost alone, represent to philosophers the modern mathematical
standpoint on this subject. But his importance is much greater, in this
domain, as a philosopher than as a mathematician; almost his only original
mathematical result, as regards Geometry, is his proof of Riemann's
formula for the infinitesimal arc, and even this proof was far from rigid,
until Lie reformed it by his method of continuous groups. In this chapter,
therefore, only two of his writings need occupy us, namely the two articles
in the Wissenschaftliche Abhandlungen, Vol. II., entitled respectively
"Ueber die thatsächlichen Grundlagen der Geometrie," 1866 (p. 610 ff.),
and "Ueber die Thatsachen, die der Geometrie zum Grunde liegen," 1868
(p. 618 ff.).

25. In the first of these, which is chiefly philosophical, Helmholtz gives
hints of his then uncompleted mathematical work, but in the main contents



himself with a statement of results. He announces that he will prove
Riemann's quadratic formula for the infinitesimal arc; but for this purpose,
he says, we have to start with Congruence, since without it spatial
measurement is impossible. Nevertheless, he maintains that Congruence is
proved by experience. How we could, without the help of measurement,
discover lapses from Congruence, is a point which he leaves undiscussed.
He then enunciates the four axioms which he considers essential to
Geometry, as follows:

(1) As regards continuity and dimensions. In a space of n dimensions, a
point is uniquely determined by the measurement of n continuous
variables (coordinates).

(2) As regards the existence of moveable rigid bodies. Between the 2n
coordinates of any point-pair of a rigid body, there exists an equation
which is the same for all congruent point-pairs. By considering a sufficient
number of point-pairs, we get more equations than unknown quantities:
this gives us a method of determining the form of these equations, so as to
make it possible for them all to be satisfied.

(3) As regards free mobility. Every point can pass freely and
continuously from one position to another. From (2) and (3) it follows, that
if two systems A and B can be brought into congruence in any one
position, this is also possible in every other position.

(4) As regards independence of rotation in rigid bodies (Monodromy).
If (n – 1) points of a body remain fixed, so that every other point can only
describe a certain curve, then that curve is closed.

These axioms, says Helmholtz, suffice to give, with the axiom of three
dimensions, the Euclidean and non-Euclidean systems as the only
alternatives. That they suffice, mathematically, cannot be denied, but they
seem, in some respects, to go too far. In the first place, there is no
necessity to make the axiom of Congruence apply to actual rigid bodies—
on this subject I have enlarged in Chapter II.[29] Again, Free Mobility, as
distinct from Congruence, hardly needs to be specially formulated: what
barrier could empty space offer to a point's progress? The axiom is
involved in the homogeneity of space, which is the same thing as the
axiom of Congruence. Monodromy, also, has been severely criticized; not
only is it evident that it might have been included in Congruence, but even



from the purely analytical point of view, Sophus Lie has proved it to be
superfluous[30]. Thus the axiom of Congruence, rightly formulated,
includes Helmholtz's third and fourth axioms and part of his second
axiom. All the four, or rather, as much of them as is relevant to Geometry,
are consequences, as we shall see hereafter, of the one fundamental
principle of the relativity of position.

26. The second article, which is mainly mathematical, supplies the
promised proof of the arc-formula, which is Helmholtz's most important
contribution to Geometry. Riemann had assumed this formula, as the
simplest of a number of alternatives: Helmholtz proved it to be a
necessary consequence of his axioms. The present paper begins with a
short repetition of the first, including the statement of the axioms, to
which, at the end of the paper, two more are added, (5) that space has three
dimensions, and (6) that space is infinite. It is supposed in the text, as also
in the first paper, that the measure of curvature cannot be negative, and,
consequently, that an infinite space must be Euclidean. This error in both
papers is corrected in notes, added after the appearance of Beltrami's paper
on negative curvature. It is a sample of the slightly unprofessional nature
of Helmholtz's mathematical work on this subject, which elicits from
Klein the following remarks[31]: "Helmholtz is not a mathematician by
profession, but a physicist and physiologist.... From this non-mathematical
quality of Helmholtz, it follows naturally that he does not treat the
mathematical portion of his work with the thoroughness which one would
demand of a mathematician by trade (von Fach)." He tells us himself that
it was the physiological study of vision which led him to the question of
the axioms, and it is as a physicist that he makes his axioms refer to actual
rigid bodies. Accordingly, we find errors in his mathematics, such as the
axiom of Monodromy, and the assumption that the measure of curvature
must be positive. Nevertheless, the proof of Riemann's arc-formula is
extremely able, and has, on the whole, been substantiated by Lie's more
thorough investigations.

27. Helmholtz's other writings on Geometry are almost wholly
philosophical, and will be discussed at length in Chapter II. For the
present, we may pass to the only other important writer of the second
period, Beltrami. As his work is purely mathematical, and contains few



controverted points, it need not, despite its great importance, detain us
long.

The "Saggio di Interpretazione della Geometria non-Euclidea[32],"
which is principally confined to two dimensions, interprets
Lobatchewsky's results by the characteristic method of the second period.
It shows, by a development of the work of Gauss and Minding[33], that all
the propositions in plane Geometry, which Lobatchewsky had set forth,
hold, within ordinary Euclidean space, on surfaces of constant negative
curvature. It is strange, as Klein points out[34], that this interpretation,
which was known to Riemann and perhaps even to Gauss, should have
remained so long without explicit statement. This is the more strange, as
Lobatchewsky's "Géométrie Imaginaire" had appeared in Crelle, Vol. XVII.
[35], and Minding's article, from which the interpretation follows at once,
had appeared in Crelle, Vol. XIX. Minding had shewn that the Geometry of
surfaces of constant negative curvature, in particular as regards geodesic
triangles, could be deduced from that of the sphere by giving the radius a
purely imaginary value ia[36]. This result, as we have seen, had also been
obtained by Lobatchewsky for his Geometry, and yet it took thirty years
for the connection to be brought to general notice.

28. In Beltrami's Saggio, straight lines are, of course, replaced by
geodesics; his coordinates are obtained through a point-by-point
correspondence with an auxiliary plane, in which straight lines correspond
to geodesics on the surface. Thus geodesics have linear equations, and are
always uniquely determined by two points. Distances on the surface,
however, are not equal to distances on the plane; thus while the surface is
infinite, the corresponding portion of the plane is contained within a
certain finite circle. The distance of two points on the surface is a certain
function of the coordinates, not the ordinary function of elementary
Geometry. These relations of plane and surface are important in
connection with Cayley's theory of distance, which we shall have to
consider next. If we were to define distance on the plane as that function
of the coordinates which gives the corresponding distance on the surface,
we should obtain what Klein calls "a plane with a hyperbolic system of
measurement (Massbestimmung)" in which Cayley's theory of distance
would hold. It is evident, however, that the ordinary notion of distance has
been presupposed in setting up the coordinate system, so that we do not



really get alternative Geometries on one and the same plane. The bearing
of these remarks will appear more fully when we come to consider Cayley
and Klein.

29. The value of Beltrami's Saggio, in his own eyes, lies in the
intelligible Euclidean sense which it gives to Lobatchewsky's planimetry:
the corresponding system of Solid Geometry, since it has no meaning for
Euclidean space, is barely mentioned in this work. In a second paper[37],
however, almost contemporaneous with the first, he proceeds to consider
the general theory of n-dimensional manifolds of constant negative
curvature. This paper is greatly influenced by Riemann's dissertation; it
begins with the formula for the linear element, and proves from this first,
that Congruence holds for such spaces, and next, that they have, according
to Riemann's definition, a constant negative measure of curvature. (It is
instructive to observe, that both in this and in the former Essay, great
stress is laid on the necessity of the Axiom of Congruence.)

This work has less philosophical interest than the former, since it does
little more than repeat, in a general form, the results which the Saggio had
obtained for two dimensions—results which sink, when extended to n
dimensions, to the level of mere mathematical constructions.
Nevertheless, the paper is important, both as a restoration of negative
curvature, which had been overlooked by Helmholtz, and as an analytical
treatment of Lobatchewsky's results—a treatment which, together with the
Saggio, at last restored to them the prominence they deserved.

Third Period.

30. The third period differs radically, alike in its methods and aims, and
in the underlying philosophical ideas, from the period which it replaced.
Whereas everything, in the second period, turned on measurement, with its
apparatus of Congruence, Free Mobility, Rigid Bodies, and the rest, these
vanish completely in the third period, which, swinging to the opposite
extreme, regards quantity as a perfectly irrelevant category in Geometry,
and dispenses with congruence and the method of superposition. The ideas
of this period, unfortunately, have found no exponent so philosophical as
Riemann or Helmholtz, but have been set forth only by technical
mathematicians. Moreover the change of fundamental ideas, which is
immense, has not brought about an equally great change in actual



procedure; for though spatial quantity is no longer a part of projective
Geometry, quantity is still employed, and we still have equations,
algebraic transformations, and so on. This is apt to give rise to confusion,
especially in the mind of the student, who fails to realise that the
quantities used, so far as the propositions are really projective, are mere
names for points, and not, as in metrical Geometry, actual spatial
magnitudes.

Nevertheless, the fundamental difference between this period and the
former must strike any one at once. Whereas Riemann and Helmholtz
dealt with metrical ideas, and took, as their foundations, the measure of
curvature and the formula for the linear element—both purely metrical—
the new method is erected on the formulae for transformation of
coordinates required to express a given collineation. It begins by reducing
all so-called metrical notions—distance, angle, etc.—to projective forms,
and obtains, from this reduction, a methodological unity and simplicity
before impossible. This reduction depends, however, except where the
space-constant is negative, upon imaginary figures—in Euclid, the circular
points at infinity; it is moreover purely symbolic and analytical, and must
be regarded as philosophically irrelevant. As the question concerning the
import of this reduction is of fundamental importance to our theory of
Geometry, and as Cayley, in his Presidential Address to the British
Association in 1883, formally challenged philosophers to discuss the use
of imaginaries, on which it depends, I will treat this question at some
length. But first let us see how, as a matter of mathematics, the reduction
is effected.

31. We shall find, throughout this period, that almost every important
proposition, though misleading in its obvious interpretation, has
nevertheless, when rightly interpreted, a wide philosophical bearing. So it
is with the work of Cayley, the pioneer of the projective method.

The projective formula for angles, in Euclidean Geometry, was first
obtained by Laguerre, in 1853. This formula had, however, a perfectly
Euclidean character, and it was left for Cayley to generalize it so as to
include both angles and distances in Euclidean and non-Euclidean systems
alike[38].



Cayley was, to the last, a staunch supporter of Euclidean space, though
he believed that non-Euclidean Geometries could be applied, within
Euclidean space, by a change in the definition of distance[39]. He has thus,
in spite of his Euclidean orthodoxy, provided the believers in the
possibility of non-Euclidean spaces with one of their most powerful
weapons. In his "Sixth Memoir upon Quantics" (1859), he set himself the
task of "establishing the notion of distance upon purely descriptive
principles." He showed that, with the ordinary notion of distance, it can be
rendered projective by reference to the circular points and the line at
infinity, and that the same is true of angles[40]. Not content with this, he
suggested a new definition of distance, as the inverse sine or cosine of a
certain function of the coordinates; with this definition, the properties
usually known as metrical become projective properties, having reference
to a certain conic, called by Cayley the Absolute. (The circular points are,
analytically, a degenerate conic, so that ordinary Geometry forms a
particular case of the above.) He proves that, when the Absolute is an
imaginary conic, the Geometry so obtained for two dimensions is
spherical Geometry. The correspondence with Lobatchewsky, in the case
where the Absolute is real, is not worked out: indeed there is, throughout,
no evidence of acquaintance with non-Euclidean systems. The importance
of the memoir, to Cayley, lies entirely in its proof that metrical is only a
branch of descriptive Geometry.

32. The connection of Cayley's Theory of Distance with Metageometry
was first pointed out by Klein[41]. Klein showed in detail that, if the
Absolute be real, we get Lobatchewsky's (hyperbolic) system; if it be
imaginary, we get either spherical Geometry or a new system, analogous to
that of Helmholtz, called by Klein elliptic; if the Absolute be an imaginary
point-pair, we get parabolic Geometry, and if, in particular, the point-pair
be the circular points, we get ordinary Euclid. In elliptic Geometry, two
straight lines in the same plane meet in only one point, not two as in
Helmholtz's system. The distinction between the two kinds of Geometry is
difficult, and will be discussed later.

33. Since these systems are all obtained from a Euclidean plane, by a
mere alteration in the definition of distance, Cayley and Klein tend to
regard the whole question as one, not of the nature of space, but of the
definition of distance. Since this definition, on their view, is perfectly



arbitrary, the philosophical problem vanishes—Euclidean space is left in
undisputed possession, and the only problem remaining is one of
convention and mathematical convenience[42]. This view has been forcibly
expressed by Poincaré: "What ought one to think," he says, "of this
question: Is the Euclidean Geometry true? The question is nonsense."
Geometrical axioms, according to him, are mere conventions: they are
"definitions in disguise[43]." Thus Klein blames Beltrami for regarding his
auxiliary plane as merely auxiliary, and remarks that, if he had known
Cayley's Memoir, he would have seen the relation between the plane and
the pseudosphere to be far more intimate than he supposed[44]. A view
which removes the problem entirely from the arena of philosophy
demands, plainly, a full discussion. To this discussion we will now
proceed.

34. The view in question has arisen, it would seem, from a natural
confusion as to the nature of the coordinates employed. Those who hold
the view have not adequately realised, I believe, that their coordinates are
not spatial quantities, as in metrical Geometry, but mere conventional
signs, by which different points can be distinctly designated. There is no
reason, therefore, until we already have metrical Geometry, for regarding
one function of the coordinates as a better expression of distance than
another, so long as the fundamental addition-equation[45] is preserved.
Hence, if our coordinates are regarded as adequate for all Geometry, an
indeterminateness arises in the expression of distance, which can only be
avoided by a convention. But projective coordinates—so our argument
will contend—though perfectly adequate for all projective properties, and
entirely free from any metrical presupposition, are inadequate to express
metrical properties, just because they have no metrical presupposition.
Thus where metrical properties are in question, Beltrami remains justified
as against Klein; the reduction of metrical to projective properties is only
apparent, though the independence of these last, as against metrical
Geometry, is perfectly real.

35. But what are projective coordinates, and how are they introduced?
This question was not touched upon in Cayley's Memoir, and it seemed,
therefore, as if a logical error were involved in using coordinates to define
distance. For coordinates, in all previous systems, had been deduced from
distance; to use any existing coordinate system in defining distance was,



accordingly, to incur a vicious circle. Cayley mentions this difficulty in a
note, where he only remarks, however, that he had regarded his
coordinates as numbers arbitrarily assigned, on some system not further
investigated, to different points. The difficulty has been treated at length
by Sir R. Ball (Theory of the Content, Trans. R. I. A. 1889), who urges that
if the values of our coordinates already involve the usual measure of
distance, then to give a new definition, while retaining the usual
coordinates, is to incur a contradiction. He says (op. cit. p. 1): "In the
study of non-Euclidean Geometry I have often felt a difficulty which has, I
know, been shared by others. In that theory it seems as if we try to replace
our ordinary notion of distance between two points by the logarithm of a
certain anharmonic ratio[46]. But this ratio itself involves the notion of
distance measured in the ordinary way. How, then, can we supersede our
old notion of distance by the non-Euclidean notion, inasmuch as the very
definition of the latter involves the former?"

36. This objection is valid, we must admit, so long as anharmonic ratio
is defined in the ordinary metrical manner. It would be valid, for example,
against any attempt to found a new definition of distance on Cremona's
account of anharmonic ratio[47], in which it appears as a metrical property
unaltered by projective transformation. If a logical error is to be avoided,
in fact, all reference to spatial magnitude of any kind must be avoided; for
all spatial magnitude, as will be shown hereafter[48], is logically dependent
on the fundamental magnitude of distance. Anharmonic ratio and
coordinates must alike be defined by purely descriptive properties, if the
use afterwards made of them is to be free from metrical presuppositions,
and therefore from the objections of Sir R. Ball.

Such a definition has been satisfactorily given by Klein[49], who
appeals, for the purpose, to v. Staudt's quadrilateral construction[50]. By
this construction, which I have reproduced in outline in Chapter III. Section
A, § 112 ff., we obtain a purely descriptive definition of harmonic and
anharmonic ratio, and, given a pair of points, we can obtain the harmonic
conjugate to any third point on the same straight line. On this construction,
the introduction of projective coordinates is based. Starting with any three
points on a straight line, we assign to them arbitrarily the numbers 0, 1, ∞.
We then find the harmonic conjugate to the first with respect to 1, ∞, and
assign to it the number 2. The object of assigning this number rather than



any other, is to obtain the value –1 for the anharmonic ratio of the four
numbers corresponding to the four points[51]. We then find the harmonic
conjugate to the point 1, with respect to 2, ∞, and assign to it the number
3; and so on. Klein has shown that by this construction, we can obtain any
number of points, and can construct a point corresponding to any given
number, fractional or negative. Moreover, when two sets of four points
have the same anharmonic ratio, descriptively defined[52], the
corresponding numbers also have the same anharmonic ratio. By
introducing such a numerical system on two straight lines, or on three, we
obtain the coordinates of any point in a plane, or in space. By this
construction, which is of fundamental importance to projective Geometry,
the logical error, upon which Sir R. Ball bases his criticism, is
satisfactorily avoided. Our coordinates are introduced by a purely
descriptive method, and involve no presupposition whatever as to the
measurement of distance.

37. With this coordinate system, then, to define distance as a certain
function of the coordinates is not to be guilty of a vicious circle. But it by
no means follows that the definition of distance is arbitrary. All reference
to distance has been hitherto excluded, to avoid metrical ideas; but when
distance is introduced, metrical ideas inevitably reappear, and we have to
remember that our coordinates give no information, primâ facie, as to any
of these metrical ideas. It is open to us, of course, if we choose, to
continue to exclude distance in the ordinary sense, as the quantity of a
finite straight line, and to define the word distance in any way we please.
But the conception, for which the word has hitherto stood, will then
require a new name, and the only result will be a confusion between the
apparent meaning of our propositions, to those who retain the associations
belonging to the old sense of the word, and the real meaning, resulting
from the new sense in which the word is used.

This confusion, I believe, has actually occurred, in the case of those who
regard the question between Euclid and Metageometry as one of the
definition of distance. Distance is a quantitative relation, and as such
presupposes identity of quality. But projective Geometry deals only with
quality—for which reason it is called descriptive—and cannot distinguish
between two figures which are qualitatively alike. Now the meaning of
qualitative likeness, in Geometry, is the possibility of mutual



transformation by a collineation[53]. Any two pairs of points on the same
straight line, therefore, are qualitatively alike; their only qualitative
relation is the straight line, which both pairs have in common; and it is
exactly the qualitative identity of the relations of the two pairs, which
enables the difference of their relations to be exhaustively dealt with by
quantity, as a difference of distance. But where quantity is excluded, any
two pairs of points on the same straight line appear as alike, and even any
two sets of three: for any three points on a straight line can be projectively
transformed into any other three. It is only with four points in a line that
we acquire a projective property distinguishing them from other sets of
four, and this property is anharmonic ratio, descriptively defined. The
projective Geometer, therefore, sees no reason to give a name to the
relation between two points, in so far as this relation is anything over and
above the unlimited straight line on which they lie; and when he
introduces the notion of distance, he defines it, in the only way in which
projective principles allow him to define it, as a relation between four
points. As he nevertheless wishes the word to give him the power of
distinguishing between different pairs of points, he agrees to take two out
of the four points as fixed. In this way, the only variables in distance are
the two remaining points, and distance appears, therefore, as a function of
two variables, namely the coordinates of the two variable points. When we
have further defined our function so that distance may be additive, we
have a function with many of the properties of distance in the ordinary
sense. This function, therefore, the projective Geometer regards as the
only proper definition of distance.

We can see, in fact, from the manner in which our projective
coordinates were introduced, that some function of these coordinates must
express distance in the ordinary sense. For they were introduced serially,
so that, as we proceeded from the zero-point towards the infinity-point,
our coordinates continually grew. To every point, a definite coordinate
corresponded: to the distance between two variable points, therefore, as a
function dependent on no other variables, must correspond some definite
function of the coordinates, since these are themselves functions of their
points. The function discussed above, therefore, must certainly include
distance in the ordinary sense.



But the arbitrary and conventional nature of distance, as maintained by
Poincaré and Klein, arises from the fact that the two fixed points, required
to determine our distance in the projective sense, may be arbitrarily
chosen, and although, when our choice is once made, any two points have
a definite distance, yet, according as we make that choice, distance will
become a different function of the two variable points. The ambiguity thus
introduced is unavoidable on projective principles; but are we to conclude,
from this, that it is really unavoidable? Must we not rather conclude that
projective Geometry cannot adequately deal with distance? If A, B, C, be
three different points on a line, there must be some difference between the
relation of A to B and of A to C, for otherwise, owing to the qualitative
identity of all points, B and C could not be distinguished. But such a
difference involves a relation, between A and B, which is independent of
other points on the line; for unless we have such a relation, the other
points cannot be distinguished as different. Before we can distinguish the
two fixed points, therefore, from which the projective definition starts, we
must already suppose some relation, between any two points on our line,
in which they are independent of other points; and this relation is distance
in the ordinary sense[54]. When we have measured this quantitative
relation by the ordinary methods of metrical Geometry, we can proceed to
decide what base-points must be chosen, on our line, in order that the
projective function discussed above may have the same value as ordinary
distance. But the choice of these base-points, when we are discussing
distance in the ordinary sense, is not arbitrary, and their introduction is
only a technical device. Distance, in the ordinary sense, remains a relation
between two points, not between four; and it is the failure to perceive that
the projective sense differs from, and cannot supersede, the ordinary
sense, which has given rise to the views of Klein and Poincaré. The
question is not one of convention, but of the irreducible metrical
properties of space. To sum up: Quantities, as used in projective Geometry,
do not stand for spatial magnitudes, but are conventional symbols for
purely qualitative spatial relations. But distance, quâ quantity, presupposes
identity of quality, as the condition of quantitative comparison. Distance in
the ordinary sense is, in short, that quantitative relation, between two
points on a line, by which their difference from other points can be
defined. The projective definition, however, being unable to distinguish a
collection of less than four points from any other on the same straight line,



makes distance depend on two other points besides those whose relation it
defines. No name remains, therefore, for distance in the ordinary sense,
and many projective Geometers, having abolished the name, believe the
thing to be abolished also, and are inclined to deny that two points have a
unique relation at all. This confusion, in projective Geometry, shows the
importance of a name, and should make us chary of allowing new
meanings to obscure one of the fundamental properties of space.

38. It remains to discuss the manner in which non-Euclidean
Geometries result from the projective definition of distance, as also the
true interpretation to be given to this view of Metageometry. It is to be
observed that the projective methods which follow Cayley deal throughout
with a Euclidean plane, on which they introduce different measures of
distance. Hence arises, in any interpretation of these methods, an apparent
subordination of the non-Euclidean spaces, as though these were less self-
subsistent than Euclid's. This subordination is not intended in what
follows; on the contrary, the correlation with Euclidean space is regarded
as valuable, first, because Euclidean space has been longer studied and is
more familiar, but secondly, because this correlation proves, when truly
interpreted, that the other spaces are self-subsistent. We may confine
ourselves chiefly, in discussing this interpretation, to distances measured
along a single straight line. But we must be careful to remember that the
metrical definition of distance—which, according to the view here
advocated, is the only adequate definition—is the same in Euclidean and
in non-Euclidean spaces; to argue in its favour is not, therefore, to argue in
favour of Euclid.

The projective scheme of coordinates consists of a series of numbers, of
which each represents a certain anharmonic ratio and denotes one and only
one point, and which increase uniformly with the distance from a fixed
origin, until they become infinite on reaching a certain point. Now Cayley
showed that, in Euclidean Geometry, distance may be expressed as the
limit of the logarithm of the anharmonic ratio of the two points and the
(coincident) points at infinity on their straight line; while, if we assumed
that the points at infinity were distinct, we obtained the formula for
distance in hyperbolic or spherical Geometry, according as these points
were real or imaginary. Hence it follows that, with the projective
definition of distance, we shall obtain precisely the formulae of



hyperbolic, parabolic or spherical Geometry, according as we choose the
point, to which the value +∞ is assigned, at a finite, infinite or imaginary
distance (in the ordinary sense) from the point to which we assign the
value 0. Our straight line remains, all the while, an ordinary Euclidean
straight line. But we have seen that the projective definition of distance
fits with the true definition only when the two fixed points to which it
refers are suitably chosen. Now the ordinary meaning of distance is
required in non-Euclidean as in Euclidean Geometries—indeed, it is only
in metrical properties that these Geometries differ. Hence our Euclidean
straight line, though it may serve to illustrate other Geometries than
Euclid's, can only be dealt with correctly by Euclid. Where we give a
different definition of distance from Euclid's, we are still in the domain of
purely projective properties, and derive no information as to the metrical
properties of our straight line. But the importance, to Metageometry, of
this new interpretation, lies in the fact that, having independently
established the metrical formulae of non-Euclidean spaces, we find, as in
Beltrami's Saggio, that these spaces can be related, by a homographic
correspondence, with the points of Euclidean space; and that this can be
effected in such a manner as to give, for the distance between two points
of our non-Euclidean space, the hyperbolic or spherical measure of
distance for the corresponding points of Euclidean space.

39. On the whole, then, a modification of Sir R. Ball's view, which is
practically a generalized statement of Beltrami's method, seems the most
tenable. He imagines what, with Grassmann, he calls a Content, i.e. a
perfectly general three-dimensional manifold, and then correlates its
elements, one by one, with points in Euclidean space. Thus every element
of the Content acquires, as its coordinates, the ordinary Euclidean
coordinates of the corresponding point in Euclidean space. By means of
this correlation, our calculations, though they refer to the Content, are
carried on, as in Beltrami's Saggio, in ordinary Euclidean space. Thus the
confusion disappears, but with it, the supposed Euclidean interpretation
also disappears. Sir R. Ball's Content, if it is to be a space at all, must be a
space radically different from Euclid's[55]; to speak, as Klein does, of
ordinary planes with hyperbolic or elliptic measures of distance, is either
to incur a contradiction, or to forego any metrical meaning of distance.
Instead of ordinary planes, we have surfaces like Beltrami's, of constant



measure of curvature; instead of Euclid's space, we have hyperbolic or
spherical space. At the same time, it remains true that we can, by Klein's
method, give a Euclidean meaning to every symbolic proposition in non-
Euclidean Geometry. For by substituting, for distance, the logarithm above
alluded to, we obtain, from the non-Euclidean result, a result which
follows from the ordinary Euclidean axioms. This correspondence
removes, once for all, the possibility of a lurking contradiction in
Metageometry, since, to a proposition in the one, corresponds one and only
one proposition in the other, and contradictory results in one system,
therefore, would correspond to contradictory results in the other. Hence
Metageometry cannot lead to contradictions, unless Euclidean Geometry,
at the same moment, leads to corresponding contradictions. Thus the
Euclidean plane with hyperbolic or elliptic measure of distance, though
either contradictory or not metrical as an independent notion, has, as a
help in the interpretation of non-Euclidean results, a very high degree of
utility.

40. We have still to discuss Klein's third kind of non-Euclidean
Geometry, which he calls elliptic. The difference between this and
spherical Geometry is difficult to grasp, but it may be illustrated by a
simpler example. A plane, as every one knows, can be wrapped, without
stretching, on a cylinder, and straight lines in the plane become, by this
operation, geodesics on the cylinder. The Geometries of the plane and the
cylinder, therefore, have much in common. But since the generating circle
of the cylinder, which is one of its geodesics, is finite, only a portion of
the plane is used up in wrapping it once round the cylinder. Hence, if we
endeavour to establish a point-to-point correspondence between the plane
and the cylinder, we shall find an infinite series of points on the plane for
a single point on the cylinder. Thus it happens that geodesics, though on
the plane they have only one point in common, may on the cylinder have
an infinite number of intersections. Somewhat similar to this is the
relation between the spherical and elliptic Geometries. To any one point in
elliptic space, two points correspond in spherical space. Thus geodesics,
which in spherical space may have two points in common, can never, in
elliptic space, have more than one intersection.

But Klein's method can only prove that elliptic Geometry holds of the
ordinary Euclidean plane with elliptic measure of distance. Klein has



made great endeavours to enforce the distinction between the spherical
and elliptic Geometries[56], but it is not immediately evident that the
latter, as distinct from the former, is valid.

In the first place, Klein's elliptic Geometry, which arises as one of the
alternative metrical systems on a Euclidean plane or in a Euclidean space,
does not by itself suffice, if the above discussion has been correct, to
prove the possibility of an elliptic space, i.e. of a space having a point-to-
point correspondence with the Euclidean space, and having as the ordinary
distance between two of its points the elliptic definition of the distance
between corresponding points of the Euclidean space. To prove this
possibility, we must adopt the direct method of Newcomb (Crelle's
Journal, Vol. 83). Now in the first place Newcomb has not proved that his
postulates are self-consistent; he has only failed to prove that they are
contradictory[57]. This would leave elliptic space in the same position in
which Lobatchewsky and Bolyai left hyperbolic space. But further there
seems to be, at first sight, in two-dimensional elliptic space, a positive
contradiction. To explain this, however, some account of the peculiarities
of the elliptic plane will be necessary.

The elliptic plane, regarded as a figure in three-dimensional
elliptic space, is what is called a double surface[58], i.e. as
Newcomb says (loc. cit. p. 298): "The two sides of a complete
plane are not distinct, as in a Euclidean surface.... If ... a being
should travel to distance 2D, he would, on his return, find
himself on the opposite surface to that on which he started, and would
have to repeat his journey in order to return to his original position
without leaving the surface." Now if we imagine a two-dimensional
elliptic space, the distinction between the sides of a plane becomes
unmeaning, since it only acquires significance by reference to the third
dimension. Nevertheless, some such distinction would be forced upon us.
Suppose, for example, that we took a small circle provided with an arrow,
as in the figure, and moved this circle once round the universe. Then the
sense of the arrow would be reversed. We should thus be forced, either to
regard the new position as distinct from the former, which transforms our
plane into a spherical plane, or to attribute the reversal of the arrow to the
action of a motion which restores our circle to its original place. It is to be
observed that nothing short of moving round the universe would suffice to



reverse the sense of the arrow. This reversal seems like an action of empty
space, which would force us to regard the points which, from a three-
dimensional point of view, are coincident though opposite, as really
distinct, and so reduce the elliptic to the spherical plane. But motion, not
space, really causes the change, and the elliptic plane is therefore not
proved to be impossible. The question is not, however, of any great
philosophic importance.

41. In connection with the reduction of metrical to projective Geometry,
we have one more topic for discussion. This is the geometrical use of
imaginaries, by means of which, except in the case of hyperbolic space,
the reduction is effected. I have already contended, on other grounds, that
this reduction, in spite of its immense technical importance, and in spite of
the complete logical freedom of projective Geometry from metrical ideas,
is purely technical, and is not philosophically valid. The same conclusion
will appear, if we take up Cayley's challenge at the British Association, in
his Presidential Address of 1883.

In this address, Professor Cayley devoted most of his time to non-
Euclidean systems. Non-Euclidean spaces, he declared, seemed to him
mistaken à priori[59]; but non-Euclidean Geometries, here as in his
mathematical works, were accepted as flowing from a change in the
definition of distance. This view has been already discussed, and need not,
therefore, be further criticised here. What I wish to speak about, is the
question with which Cayley himself opened his address, namely, the
geometrical use and meaning of imaginary quantities. From the manner in
which he spoke of this question, it becomes imperative to treat it
somewhat at length. For he said (pp. 8–9):

"... The notion which is the really fundamental one (and I cannot too
strongly emphasize the assertion) underlying and pervading the whole
notion of modern analysis and Geometry, [is] that of imaginary magnitude
in analysis, and of imaginary space (or space as the locus in quo of
imaginary points and figures) in Geometry: I use in each case the word
imaginary as including real.... Say even the conclusion were that the
notion belongs to mere technical mathematics, or has reference to
nonentities in regard to which no science is possible, still it seems to me
that (as a subject of philosophical discussion) the notion ought not to be
thus ignored; it should at least be shown that there is a right to ignore it."



42. This right it is now my purpose to demonstrate. But for fear non-
mathematicians should miss the point of Cayley's remark (which has
sometimes been erroneously supposed to refer to non-Euclidean spaces), I
may as well explain, at the outset, that this question is radically distinct
from, and only indirectly connected with, the validity or import of
Metageometry. An imaginary quantity is one which involves √–1 : its most
general form is a + √–1 b where a and b are real; Cayley uses the word
imaginary so as to include real, in order to cover the special case where b
= 0. It will be convenient, in what follows, to exclude this wider meaning,
and assume that b is not zero. An imaginary point is one whose
coordinates involve √–1, i.e. whose coordinates are imaginary quantities.
An imaginary curve is one whose points are imaginary—or, in some
special uses, one whose equation contains imaginary coefficients. The
mathematical subtleties to which this notion leads need not be here
discussed; the reader who is interested in them will find an excellent
elementary account of their geometrical uses in Klein's Nicht-Euklid, II.
pp. 38–46. But for our present purpose, we may confine ourselves to
imaginary points. If these are found to have a merely technical import, and
to be destitute of any philosophical meaning, then the same will hold of
any collection of imaginary points, i.e. of any imaginary curve or surface.

That the notion of imaginary points is of supreme importance in
Geometry, will be seen by any one who reflects that the circular points are
imaginary, and that the reduction of metrical to projective Geometry,
which is one of Cayley's greatest achievements, depends on these points.
But to discuss adequately their philosophical import is difficult to me,
since I am unacquainted with any satisfactory philosophy of imaginaries
in pure Algebra. I will therefore adopt the most favourable hypothesis, and
assume that no objection can be successfully urged against this use. Even
on this hypothesis, I think, no case can be made out for imaginary points
in Geometry.

In the first place, we must exclude, from the imaginary points
considered, those whose coordinates are only imaginary with certain
special systems of coordinates. For example, if one of a point's
coordinates be the tangent from it to a sphere, this coordinate will be
imaginary for any point inside the sphere, and yet the point is perfectly
real. A point, then, is only to be called imaginary, when, whatever real



system of coordinates we adopt, one or more of the quantities expressing
these coordinates remains imaginary. For this purpose, it is
mathematically sufficient to suppose our coordinates Cartesian—a point
whose Cartesian coordinates are imaginary, is a true imaginary point in the
above sense.

To discuss the meaning of such a point, it is necessary to consider
briefly the fundamental nature of the correspondence between a point and
its coordinates. Assuming that elementary Geometry has proved—what I
think it does satisfactorily prove—that spatial relations are susceptible of
quantitative measurement, then a given point will have, with a suitable
system of coordinates, in a space of n dimensions, n quantitative relations
to the fixed spatial figure forming the axes of coordinates, and these n
quantitative relations will, under certain reservations, be unique—i.e., no
other point will have the same quantities assigned to it. (With many
possible coordinate systems, this latter condition is not realized: but for
that very reason they are inconvenient, and employed only in special
problems.) Thus given a coordinate system, and given any set of
quantities, these quantities, if they determine a point at all, determine it
uniquely. But, by a natural extension of the method, the above reservation
is dropped, and it is assumed that to every set of quantities some point
must correspond. For this assumption there seems to me no vestige of
evidence. As well might a postman assume that, because every house in a
street is uniquely determined by its number, therefore there must be a
house for every imaginable number. We must know, in fact, that a given set
of quantities can be the coordinates of some point in space, before it is
legitimate to give any spatial significance to these quantities: and this
knowledge, obviously, cannot be derived from operations with coordinates
alone, on pain of a vicious circle. We must, to return to the above analogy,
know the number of houses in Piccadilly, before we know whether a given
number has a corresponding house or not; and arithmetic alone, however
subtly employed, will never give us this information.

Thus the distinction which is important is, not the distinction between
real and imaginary quantities, but between quantities to which points
correspond and quantities to which no points correspond. We can
conventionally agree to denote real points by imaginary coordinates, as in
the Gaussian method of denoting by the single quantity (a + √–1 b) the



point whose ordinary coordinates are a, b. But this does not touch Cayley's
meaning. Cayley means that it is of great utility in mathematics to regard,
as points with a real existence in space, the assumed spatial correlates of
quantities which, with the coordinate system employed, have no correlates
in every-day space; and that this utility is supposed, by many
mathematicians, to indicate the validity of so fruitful an assumption. To
fix our ideas, let us consider Cartesian axes in three-dimensional
Euclidean space. Then it appears, by inspection, that a point may be
situated at any distance to right or left of any of the three coordinate
planes; taking this distance as a coordinate, therefore, it appears that real
points correspond to all quantities from -∞ to +∞. The same appears for
the other two coordinates; and since elementary Geometry proves their
variations mutually independent, we know that one and only one real point
corresponds to any three real quantities. But we also know, from the
exhaustive method pursued, that all space is covered by the range of these
three variable quantities: a fresh set of quantities, therefore, such as is
introduced by the use of imaginaries, possesses no spatial correlate, and
can be supposed to possess one only by a convenient fiction.

43. The fact that the fiction is convenient, however, may be thought to
indicate that it is more than a fiction. But this presumption, I think, can be
easily explained away. For all the fruitful uses of imaginaries, in
Geometry, are those which begin and end with real quantities, and use
imaginaries only for the intermediate steps. Now in all such cases, we
have a real spatial interpretation at the beginning and end of our argument,
where alone the spatial interpretation is important: in the intermediate
links, we are dealing in a purely algebraical manner with purely
algebraical quantities, and may perform any operations which are
algebraically permissible. If the quantities with which we end are capable
of spatial interpretation, then, and only then, our result may be regarded as
geometrical. To use geometrical language, in any other case, is only a
convenient help to the imagination. To speak, for example, of projective
properties which refer to the circular points, is a mere memoria technica
for purely algebraical properties; the circular points are not to be found in
space, but only in the auxiliary quantities by which geometrical equations
are transformed. That no contradictions arise from the geometrical
interpretation of imaginaries, is not wonderful: for they are interpreted
solely by the rules of Algebra, which we may admit as valid in their



application to imaginaries. The perception of space being wholly absent,
Algebra rules supreme, and no inconsistency can arise. Wherever, for a
moment, we allow our ordinary spatial notions to intrude, the grossest
absurdities do arise—every one can see that a circle, being a closed curve,
cannot get to infinity. The metaphysician, who should invent anything so
preposterous as the circular points, would be hooted from the field. But the
mathematician may steal the horse with impunity.

Finally, then, only a knowledge of space, not a knowledge of Algebra,
can assure us that any given set of quantities will have a spatial correlate,
and in the absence of such a correlate, operations with these quantities
have no geometrical import. This is the case with imaginaries in Cayley's
sense, and their use in Geometry, great as are its technical advantages, and
rigid as is its technical validity, is wholly destitute of philosophical
importance.

44. We have now, I think, discussed most of the questions concerning
the scope and validity of the projective method. We have seen that it is
independent of all metrical presuppositions, and that its use of coordinates
does not involve the assumption that spatial magnitudes are measured or
expressed by them. We have seen that it is able to deal, by its own methods
alone, with the question of the qualitative likeness of geometrical figures,
which is logically prior to any comparison as to quantity, since quantity
presupposes qualitative likeness. We have seen also that, so far as its
legitimate use extends, it applies equally to all homogeneous spaces, and
that its criterion of an independently possible space—the determination of
a straight line by two points[60]—is not subject to the qualifications and
limitations which belong, as we have seen in the case of the cylinder, to
the metrical criterion of constant curvature. But we have also seen that,
when projective Geometry endeavours to grapple with spatial magnitude,
and bring distance and the measurement of angles beneath its sway, its
success, though technically valid and important, is philosophically an
apparent success only. Metrical Geometry, therefore, if quantity is to be
applied to space at all, remains a separate, though logically subsequent
branch of Mathematics.

45. It only remains to say a few words about Sophus Lie. As a
mathematician, as the inventor of a new and immensely powerful method
of analysis, he cannot be too highly praised. Geometry is only one of the



numerous subjects to which his theory of continuous groups applies, but
its application to Geometry has made a revolution in method, and has
rendered possible, in such problems as Helmholtz's, a treatment infinitely
more precise and exhaustive than any which was possible before.

The general definition of a group is as follows: If we have any number
of independent variables x1 x2...xn, and any series of transformations of
these into new variables—the transformations being defined by equations
of specified forms, with parameters varying from one transformation to
another—then the series of transformations form a group, if the successive
application of any two is equivalent to a single member of the original
series of transformations. The group is continuous, when we can pass, by
infinitesimal gradations within the group, from any one of the
transformations to any other.

Now, in Geometry, the result of two successive motions or collineations
of a figure can always be obtained by a single motion or collineation, and
any motion or collineation can be built up of a series of infinitesimal
motions or collineations. Moreover the analytical expression of either is a
certain transformation of the coordinates of all the points of the figure[61].
Hence the transformations determining a motion or a collineation are such
as to form a continuous group. But the question of the projective
equivalence of two figures, to which all projective Geometry is reducible,
must always be dealt with by a collineation; and the question of the
equality of two figures, to which all metrical Geometry is reducible, must
always be decided by a motion such as to cause superposition; hence the
whole subject of Geometry may be regarded as a theory of the continuous
groups which define all possible collineations and motions.

Now Sophus Lie has developed, at great length, the purely analytical
theory of groups; he has therefore, by this method of formulating the
problem, a very powerful weapon ready for the attack. In two papers "On
the foundations of Geometry[62]," undertaken at Klein's urgent request, he
takes premisses which roughly correspond to those of Helmholtz, omitting
Monodromy, and applies the theory of groups to the deduction of their
consequences[63]. Helmholtz's work, he says, can hardly be looked upon as
proving its conclusions, and indeed the more searching analysis of the
group-theory reveals several possibilities unknown to Helmholtz.



Nevertheless, as a pioneer, devoid of Lie's machinery, Helmholtz deserves,
I think, more praise than Lie is willing to give him[64].

Lie's method is perfectly exhaustive; omitting the premiss of
Monodromy, the others show that a body has six degrees of freedom, i.e.
that the group giving all possible motions of a body will have six
independent members; if we keep one point fixed, the number of
independent members is reduced to three. He then, from his general
theory, enumerates all the groups which satisfy this condition. In order that
such a group should give possible motions, it is necessary, by Helmholtz's
second axiom, that it should leave invariant some function of the
coordinates of any two points. This eliminates several of the groups
previously enumerated, each of which he discusses in turn. He is thus led
to the following results:

I. In two dimensions, if free mobility is to hold universally, there are no
groups satisfying Helmholtz's first three axioms, except those which give
the ordinary Euclidean and non-Euclidean motions; but if it is to hold only
within a certain region, there is also a possible group in which the curve
described by any point in a rotation is not closed, but an equiangular
spiral. To exclude this possibility, Helmholtz's axiom of Monodromy is
required.

II. In three dimensions, the results go still more against Helmholtz.
Assuming free mobility only within a certain region, we have to
distinguish two cases: Either free mobility holds, within that region,
absolutely without exception, i.e. when one point is held fast, every other
point within the region can move freely over a surface: in this case the
axiom of Monodromy is unnecessary, and the first three axioms suffice to
define our group as that of Euclidean and non-Euclidean motions. Or free
mobility, within the specified region, holds only of every point of general
position, while the points of a certain line, when one point is fixed, are
only able to move on that line, not on a surface: when this is the case,
other groups are possible, and can only be excluded by Helmholtz's fourth
axiom.

Having now stated the purely mathematical results of Lie's
investigations, we may return to philosophical considerations, by which
Helmholtz's work was mainly motived. It becomes obvious, not only that



exceptions within a certain region, but also that limitation to a certain
region, of the axiom of Free Mobility, are philosophically quite impossible
and inconceivable. How can a certain line, or a certain surface, form an
impassable barrier in space, or have any mobility different in kind from
that of all other lines or surfaces? The notion cannot, in philosophy, be
permitted for a moment, since it destroys that most fundamental of all the
axioms, the homogeneity of space. We not only may, therefore, but must
take Helmholtz's axiom of Free Mobility in its very strictest sense; the
axiom of Monodromy thus becomes mathematically, as well as
philosophically, superfluous. This is, from a philosophical standpoint, the
most important of Lie's results.

46. I have now come to the end of my history of Metageometry. It has
not been my aim to give an exhaustive account of even the important
works on the subject—in the third period, especially, the names of
Poincaré, Pasch, Cremona, Veronese, and others who might be mentioned,
would have cried shame upon me, had I had any such object. But I have
tried to set forth, as clearly as I could, the principles at work in the various
periods, the motives and results of successive theories. We have seen how
the philosophical motive, at first predominant, has been gradually
extruded by the purely mathematical and technical spirit of most recent
Geometers. At first, to discredit the Transcendental Aesthetic seemed, to
Metageometers, as important as to advance their science; but from the
works of Cayley, Klein or Lie, no reader could gather that Kant had ever
lived. We have also seen, however, that as the interest in philosophy
waned, the interest for philosophy increased: as the mathematical results
shook themselves free from philosophical controversies, they assumed
gradually a stable form, from which further development, we may
reasonably hope, will take the form of growth, rather than transformation.
The same gradual development out of philosophy might, I believe, be
traced in the infancy of most branches of mathematics; when
philosophical motives cease to operate, this is, in general, a sign that the
stage of uncertainty as to premisses is past, so that the future belongs
entirely to mathematical technique. When this stable stage has been
attained, it is time for Philosophy to borrow of Science, accepting its final
premisses as those imposed by a real necessity of fact or logic.



47. Now in discussing the systems of Metageometry, we have found two
kinds, radically distinct and subject to different axioms. The historically
prior kind, which deals with metrical ideas, discusses, to begin with, the
conditions of Free Mobility, which is essential to all measurement of
space. It finds the analytical expression of these conditions in the
existence of a space-constant, or constant measure of curvature, which is
equivalent to the homogeneity of space. This is its first axiom.

Its second axiom states that space has a finite integral number of
dimensions, i.e. in metrical terms, that the position of a point, relative to
any other figure in space, is uniquely determined by a finite number of
spatial magnitudes, called coordinates.

The third axiom of metrical Geometry may be called, to distinguish it
from the corresponding projective axiom, the axiom of distance. There
exists one relation, it says, between any two points, which can be
preserved unaltered in a combined motion of both points, and which, in
any motion of a system as one rigid body, is always unaltered. This
relation we call distance.

The above statement of the three essential axioms of metrical Geometry
is taken from Helmholtz as amended by Lie. Lie's own statement of the
axioms, as quoted above, has been too much influenced by projective
methods to give a historically correct rendering of the spirit of the second
period; Helmholtz's statement, on the other hand, requires, as Lie has
shewn, very considerable modifications. The above compromise may,
therefore, I hope be taken as accepting Lie's corrections while retaining
Helmholtz's spirit.

48. But metrical Geometry, though it is historically prior, is logically
subsequent to projective Geometry. For projective Geometry deals directly
with that qualitative likeness, which the judgment of quantitative
comparison requires as its basis. Now the above three axioms of metrical
Geometry, as we shall see in Chapter III. Section B, do not presuppose
measurement, but are, on the contrary, the conditions presupposed by
measurement. Without these axioms, which are common to all three
spaces, measurement would be impossible; with them, so I shall contend,
measurement is able, though only empirically, to decide approximately
which of the three spaces is valid of our actual world. But if these three



axioms themselves express, not results, but conditions, of measurement,
must they not be equivalent to the statement of that qualitative likeness on
which quantitative comparison depends? And if so, must we not expect to
find the same axioms, though perhaps under a different form, in projective
Geometry?

49. This expectation will not be disappointed. The above three axioms,
as we shall see hereafter, are one and all philosophically equivalent to the
homogeneity of space, and this in turn is equivalent to the axioms of
projective Geometry. The axioms of projective Geometry, in fact, may be
roughly stated thus:

I. Space is continuous and infinitely divisible; the zero of extension,
resulting from infinite division, is called a Point. All points are
qualitatively similar, and distinguished by the mere fact that they lie
outside one another.

II. Any two points determine a unique figure, the straight line; two
straight lines, like two points, are qualitatively similar, and distinguished
by the mere fact that they are mutually external.

III. Three points not in one straight line determine a unique figure, the
plane, and four points not in one plane determine a figure of three
dimensions. This process may, so far as can be seen à priori, be continued,
without in any way interfering with the possibility of projective Geometry,
to five or to n points. But projective Geometry requires, as an axiom, that
the process should stop with some positive integral number of points, after
which, any fresh point is contained in the figure determined by those
already given. If the process stops with (n + 1) points, our space is said to
have n dimensions.

These three axioms, it will be seen, are the equivalents of the three
axioms of metrical Geometry[65], expressed without reference to quantity.
We shall find them to be deducible, as before, from the homogeneity of
space, or, more generally still, from the possibility of experiencing
externality. They will therefore appear as à priori, as essential to the
existence of any Geometry and to experience of an external world as such.

50. That some logical necessity is involved in these axioms might, I
think, be inferred as probable, from their historical development alone.



For the systems of Metageometry have not, in general, been set up as more
likely to fit facts than the system of Euclid; with the exception of Zöllner,
for example, I know of no one who has regarded the fourth dimension as
required to explain phenomena. As regards the space-constant again,
though a small space-constant is regarded as empirically possible, it is not
usually regarded as probable; and the finite space-constants, with which
Metageometry is equally conversant, are not usually thought even
possible, as explanations of empirical fact[66]. Thus the motive has been
throughout not one of fact, but one of logic. Does not this give a strong
presumption, that those axioms which are retained, are retained because
they are logically indispensable? If this be so, the axioms common to
Euclid and Metageometry will be à priori, while those peculiar to Euclid
will be empirical. After a criticism of some differing theories of
Geometry, I shall proceed, in Chapters III. and IV., to the proof and
consequences of this thesis, which will form the remainder of the present
work.



FOOTNOTES:
[5] V. Mémoires de l'Académie royale des Sciences de l'lnstitut de France, T. XII. 1833, for a full
statement of his results, with references to former writings.

[6] This bolder method, it appears, had been suggested, nearly a century earlier, by an Italian,
Saccheri. His work, which seems to have remained completely unknown until Beltrami
rediscovered it in 1889, is called "Euclides ab omni naevo vindicatus, etc." Mediolani, 1733.
(See Veronese, Grundzüge der Geometrie, German translation, Leipzig, 1894, p. 636.) His results
included spherical as well as hyperbolic space; but they alarmed him to such an extent that he
devoted the last half of his book to disproving them.

[7] Klein's first account of elliptic Geometry, as a result of Cayley's projective theory of distance,
appeared in two articles entitled "Ueber die sogenannte Nicht-Euklidische Geometrie, I, II,"
Math. Annalen 4, 6 (1871–2). It was afterwards independently discovered by Newcomb, in an
article entitled "Elementary Theorems relating to the geometry of a space of three dimensions,
and of uniform positive curvature in the fourth dimension," Crelle's Journal für die reine und
angewandte Mathematik, Vol. 83 (1877). For an account of the mathematical controversies
concerning elliptic Geometry, see Klein's "Vorlesungen über Nicht-Euklidische Geometrie,"
Göttingen 1893, I. p. 284 ff. A bibliography of the relevant literature up to the year 1878 was
given by Halsted in the American Journal of Mathematics, Vols. 1, 2.

[8] Veronese (op. cit. p. 638) denies the priority of Gauss in the invention of a non-Euclidean
system, though he admits him to have been the first to regard the axiom of parallels as
indemonstrable. His grounds for the former assertion seem scarcely adequate: on the evidence
against it, see Klein, Nicht-Euklid, I. pp. 171–174.

[9] V. Briefwechsel mit Schumacher, Bd. II. p. 268.

[10] f. Helmholtz, Wiss. Abh. II. p. 611.

[11] Crelle's Journal, 1837.

[12] Theorie der Parallellinien, Berlin, 1840. Republished, Berlin, 1887. Translated by Halsted,
Austin, Texas, U.S.A. 4th edition, 1892.

[13] Frischauf, Absolute Geometrie, nach Johann Bolyai, Leipzig, 1872. Halsted, The Science
Absolute of Space, translated from the Latin, 4th edition, Austin, Texas, U.S.A. 1896.

[14] Both Lobatchewsky and Bolyai, as Veronese remarks, start rather from the point-pair than
from distance. See Frischauf, Absolute Geometrie, Anhang.

[15] Compare Stallo, Concepts of Modern Physics, p. 248.

[16] Gesammelte Werke, pp. 255–268.

[17] On the history of this word, see Stallo, Concepts of Modern Physics, p. 258. It was used by
Kant, and adapted by Herbart to almost the same meaning as it bears in Riemann. Herbart,
however, also uses the word Reihenform to express a similar idea. See Psychologie als
Wissenschaft, I. § 100 and II. § 139, where Riemann's analogy with colours is also suggested.

[18] Compare Erdmann's "Grössenbegriff vom Raum."



[19] Compare Veronese, op. cit. p. 642: "Riemann ist in seiner Definition des Begriffs Grösse
dunkel." See also Veronese's whole following criticism.

[20] Vorträge und Reden, Vol. II. p. 18.

[21] Cf. Klein, Nicht-Euklid, I. p. 160.

[22] Since we are considering the curvature at a point, we are only concerned with the first
infinitesimal elements of the geodesics that start from such a point.

[23] Disquisitiones generales circa superficies curvas, Werke, Bd. IV. SS. 219–258, 1827.

[24] Nevertheless, the Geometries of different surfaces of equal curvature are liable to important
differences. For example, the cylinder is a surface of zero curvature, but since its lines of
curvature in one direction are finite, its Geometry coincides with that of the plane only for
lengths smaller than the circumference of its generating circle (see Veronese, op. cit. p. 644). Two
geodesics on a cylinder may meet in many points. For surfaces of zero curvature on which this is
not possible, the identity with the plane may be allowed to stand. Otherwise, the identity extends
only to the properties of figures not exceeding a certain size.

[25] For we may consider two different parts of the same surface as corresponding parts of
different surfaces; the above proposition then shows that a figure can be reproduced in one part
when it has been drawn in another, if the measures of curvature correspond in the two parts.

[26] Crelle, Vols, XIX., XX., 1839–40.

[27] In this formula, u, v may be the lengths of lines, or the angles between lines, drawn on the
surface, and having thus no necessary reference to a third dimension.

[28] In what follows, I have given rather Klein's exposition of Riemann, than Riemann's own
account. The former is much clearer and fuller, and not substantially different in any way. V.
Klein, Nicht-Euklid, I. pp. 206 ff.

[29] See §§ 69–73.

[30] Grundlagen der Geometrie, I. and II., Leipziger Berichte, 1890; v. end of present chapter, §
45.

[31] Nicht-Euklid, I. pp. 258–9.

[32] Giornale di Matematiche, Vol. VI., 1868. Translated into French by J. Hoüel in the "Annales
Scientifiques de l'École Normale Supérieure," Vol. VI. 1869.

[33] Crelle's Journal, Vols. XIX. XX., 1839–40.

[34] Nicht-Euklid, I. p. 190.

[35] This article is more trigonometrical and analytical than the German book, and therefore
makes the above interpretation peculiarly evident.

[36] Such surfaces are by no means particularly remote. One of them, for example, is formed by
the revolution of the common Tractrix

x = a sin φ,   y = a (log tan φ
2

 + cos φ).

[37] "Teoria fondamentale degli spazii di curvatura costanta," Annali di Matematica, II. Vol. 2,
1868–9. Also translated by J. Hoüel, loc. cit.



[38] See Klein, Nicht-Euklid, I. p. 47 ff., and the references there given.

[39] See quotation below, from his British Association Address.

[40] Compare the opening sentence, due to Cayley, of Salmon's Higher Plane Curves.

[41] V. Nicht-Euklid, I. Chaps. I. and II.

[42] See p. 9 of Cayley's address to the Brit. Ass. 1883. Also a quotation from Klein in
Erdmann's Axiome der Geometrie, p. 124 note.

[43] Nature, Vol. XLV. p. 407.

[44] Nicht-Euklid, I. p. 200.

[45] I.e. the equation AB + BC = AC, for three points in one straight line.

[46] The formula substituted by Klein for Cayley's inverse sine or cosine. The two are
equivalent, but Klein's is mathematically much the more convenient.

[47] Elements of Projective Geometry, Second Edition, Oxford, 1893, Chap. IX.

[48] Chap. III. Section B.

[49] See Nicht-Euklid, I. p. 338 ff.

[50] See his Geometrie der Lage, § 8, Harmonische Gebilde.

[51] The anharmonic ratio of four numbers, p, q, r, s, is defined as

(p - q).(r - s) / (p - r).(q - s).
 

[52] I.e. as transformable into each other by a collineation. See Chap. III. Sec. A, § 110.

[53] See Chap. III. Sec. A.

[54] It follows from this, that the reduction of metrical to projective properties, even when, as in
hyperbolic Geometry, the Absolute is real, is only apparent, and has a merely technical validity.

[55] Sir R. Ball does not regard his non-Euclidean content as a possible space (v. op. cit. p. 151).
In this important point I disagree with his interpretation, holding such a content to be a space as
possible, à priori, as Euclid's, and perhaps actually true within the margin due to errors of
observation.

[56] See Nicht-Euklid, I. p. 97 ff. and p. 292 ff.

[57] Newcomb says (loc. cit. p. 293): "The system here set forth is founded on the following
three postulates.

"1. I assume that space is triply extended, unbounded, without properties dependent either on
position or direction, and possessing such planeness in its smallest parts that both the postulates
of the Euclidean Geometry, and our common conceptions of the relations of the parts of space
are true for every indefinitely small region in space.

"2. I assume that this space is affected with such curvature that a right line shall always return
into itself at the end of a finite and real distance 2D without losing, in any part of its course, that
symmetry with respect to space on all sides of it which constitutes the fundamental property of
our conception of it.



"3. I assume that if two right lines emanate from the same point, making the indefinitely small
angle a with each other, their distance apart at the distance r from the point of intersection will be
given by the equation

s = 2aD
π

 sin rπ
2D

 .

The right line thus has this property in common with the Euclidean right line that two such lines
intersect only in a single point. It may be that the number of points in which two such lines can
intersect admit of being determined from the laws of curvature, but not being able so to
determine it, I assume as a postulate the fundamental property of the Euclidean right line."

It is plain that in the absence of the determination spoken of, the possibility of elliptic space is
not established. It may be possible, for example, to prove that, in a space where there is a
maximum to distance, there must be an infinite number of straight lines joining two points of
maximum distance. In this event, elliptic space would become impossible.

[58] For an elucidation of this term, see Klein, Nicht-Euklid, I. p. 99 ff.

[59] Cf. p. 9 of Report: "My own view is that Euclid's twelfth axiom, in Playfair's form of it, does
not need demonstration, but is part of our notion of space, of the physical space of our
experience, but which is the representation lying at the bottom of all external experience."

[60] The exception to this axiom, in spherical space, presupposes metrical Geometry, and does
not destroy the validity of the axiom for projective Geometry. See Chap. III. Sec. B, § 171.

[61] Mathematicians of Lie's school have a habit, at first somewhat confusing, of speaking of
motions of space instead of motions of bodies, as though space as a whole could move. All that
is meant is, of course, the equivalent motion of the coordinate axes, i.e. a change of axes in the
usual elementary sense.

[62] "Ueber die Grundlagen der Geometrie," Leipziger Berichte, 1890. The problem of these two
papers is really metrical, since it is concerned, not with collineations in general, but with motions.
The problem, however, is dealt with by the projective method, motions being regarded as
collineations which leave the Absolute unchanged. It seemed impossible, therefore, to discuss
Lie's work, until some account had been given of the projective method.

[63] Lie's premisses, to be accurate, are the following:

Let

x1 = f (x, y, z, a1, a2...)
 x2 = φ (x, y, z, a1, a2...)
 x3 = ψ (x, y, z, a1, a2...)
 

give an infinite family of real transformations of space, as to which we make the following
hypotheses:

  A. The functions f, φ, ψ, are analytical functions of

x, y, z, a1, a2....
 

  B. Two points x1y1z1, x2y2z2 possess an invariant, i.e.

Ω(x1, y1, z1, x2, y2, z2) = Ω(x1′, y1′, z1′, x2′, y2′, z2′)
 

where x1′..., x2′..., are the transformed coordinates of the two points.



  C. Free Mobility: i.e., any point can be moved into any other position; when one point is
fixed, any other point of general position can take up ∞2 positions; when two points are fixed,
any other of general position can take up ∞1 positions; when three, no motion is possible—these
limitations being results of the equations given by the invariant Ω.

[64] On this point, cf. Klein, Höhere Geometrie, Göttingen, 1893, II. pp. 225–244, especially pp.
230–1.

[65] Axiom II. of the metrical triad corresponds to Axiom III. of the projective, and vice versâ.

[66] Cf. Helmholtz, Wiss. Abh. Vol. II. p. 640, note: "Die Bearbeiter der Nicht-Euklidischen
Geometrie (haben) deren objective Wahrheit nie behauptet."



CH A PTER I I .
  

C R I T I C A L  A C C O U N T  O F  S O M E  P R E V I O U S  P H I L O S O P H I C A L
T H E O R I E S  O F  G E O M E T R Y.

51. We have now traced the mathematical development of the theory of
geometrical axioms, from the first revolt against Euclid to the present day.
We may hope, therefore, to have at our command the technical knowledge
required for the philosophy of the subject. The importance of Geometry, in
the theories of knowledge which have arisen in the past, can scarcely be
exaggerated. In Descartes, we find the whole theory of method dominated
by analytical Geometry, of whose fruitfulness he was justly proud. In
Spinoza, the paramount influence of Geometry is too obvious to require
comment. Among mathematicians, Newton's belief in absolute space was
long supreme, and is still responsible for the current formulation of the
laws of motion. Against this belief on the one hand, and against Leibnitz's
theory of space on the other, and not, as Caird has pointed out[67], against
Hume's empiricism, was directed that keystone of the Critical Philosophy,
the Kantian doctrine of space. Thus Geometry has been, throughout, of
supreme importance in the theory of knowledge.

But in a criticism of representative modern theories of Geometry, which
is designed to be, not a history of the subject, but an introduction to, and
defence of, the views of the author, it will not be necessary to discuss any
more ancient theory than that of Kant. Kant's views on this subject, true or
false, have so dominated subsequent thought, that whether they were
accepted or rejected, they seemed equally potent in forming the opinions,
and the manner of exposition, of almost all later writers.



Kant.

52. It is not my purpose, in this chapter, to add to the voluminous
literature of Kantian criticism, but only to discuss the bearing of
Metageometry on the argument of the Transcendental Aesthetic, and the
aspect under which this argument must be viewed in a discussion of
Geometry[68]. On this point several misunderstandings seem to me to have
had wide prevalence, both among friends and foes, and these
misunderstandings I shall endeavour, if I can, to remove.

In the first place, what does Kant's doctrine mean for Geometry?
Obviously not the aspect of the doctrine which has been attacked by
psychologists, the "Kantian machine-shop" as James calls it—at any rate,
if this can be clearly separated from the logical aspect. The question
whether space is given in sensation, or whether, as Kant maintained, it is
given by an intuition to which no external matter corresponds, may for the
present be disregarded. If, indeed, we held the view which seems crudely
to sum up the standpoint of the Critique, the view that all certain
knowledge is self-knowledge, then we should be committed, if we had
decided that Geometry was apodeictic, to the view that space is subjective.
But even then, the psychological question could only arise when the
epistemological question had been solved, and could not, therefore, be
taken into account in our first investigation. The question before us is
precisely the question whether, or how far, Geometry is apodeictic, and for
the moment we have only to investigate this question, without fear of
psychological consequences.

53. Now on this question, as on almost all questions in the Aesthetic or
the Analytic, Kant's argument is twofold. On the one hand, he says,
Geometry is known to have apodeictic certainty: therefore space must be à
priori and subjective. On the other hand, it follows, from grounds
independent of Geometry, that space is subjective and à priori; therefore
Geometry must have apodeictic certainty. These two arguments are not
clearly distinguished in the Aesthetic, but a little analysis, I think, will
disentangle them. Thus in the first edition, the first two arguments deduce,
from non-geometrical grounds, the apriority of space; the third deduces
the apodeictic certainty of Geometry, and maintains, conversely, that no



other view can account for this certainty[69]; the last two arguments only
maintain that space is an intuition, not a concept. In the second edition, the
double argument is clearer, the apriority of space being proved
independently of Geometry in the metaphysical deduction, and deduced
from the certainty of Geometry, as the only possible explanation of this, in
the transcendental deduction. In the Prolegomena, the latter argument
alone is used, but in the Critique both are employed.

54. Now it must be admitted, I think, that Metageometry has destroyed
the legitimacy of the argument from Geometry to space; we can no longer
affirm, on purely geometrical grounds, the apodeictic certainty of Euclid.
But unless Metageometry has done more than this—unless it has proved,
what I believe it alone cannot prove, that Euclid has not apodeictic
certainty—then Kant's other line of argument retains what force it may
ever have had. The actual space we know, it may say, is admittedly
Euclidean, and is proved, without any reference to Geometry, to be à
priori; hence Euclid has apodeictic certainty, and non-Euclid stands
condemned. To this it is no answer to urge, with the Metageometers, that
non-Euclidean systems are logically self-consistent; for Kant is careful to
argue that geometrical reasoning, by virtue of our intuition of space, is
synthetic, and cannot, though à priori, be upheld by the principle of
contradiction alone[70]. Unless non-Euclideans can prove, what they have
certainly failed to prove up to the present, that we can frame an intuition
of non-Euclidean spaces, Kant's position cannot be upset by Metageometry
alone, but must also be attacked, if it is to be successfully attacked, on its
purely philosophical side.

55. For such an attack, two roads lie open: either we may disprove the
first two arguments of the Aesthetic, or we may criticize, from the
standpoint of general logic, the Kantian doctrine of synthetic à priori
judgments and their connection with subjectivity. Both these attacks, I
believe, could be conducted with some success; but if we are to disprove
the apodeictic certainty of Geometry, one or other is essential, and both, I
believe, will be found only partially successful. It will be my aim to prove,
in discussing these two lines of attack, (1) that the distinction of synthetic
and analytic judgments is untenable, and further, that the principle of
contradiction can only give fruitful results on the assumption that
experience in general, or, in a particular science, some special branch of



experience, is to be formally possible; (2) that the first two arguments of
the Transcendental Aesthetic suffice to prove, not Euclidean space, but
some form of externality—which may be sensational or intuitional, but not
merely conceptual—a necessary prerequisite of experience of an external
world. In the third and fourth chapters, I shall contend, as a result of these
conclusions, that those axioms, which Euclid and Metageometry have in
common, coincide with those properties of any form of externality which
are deducible, by the principle of contradiction, from the possibility of
experience of an external world. These properties, then, may be said,
though not quite in the Kantian sense, to be à priori properties of space,
and as to these, I think, a modified Kantian position may be maintained.
But the question of the subjective or objective nature of space may be left
wholly out of account during the course of this discussion, which will gain
by dealing exclusively with logical, as opposed to psychological points of
view.

56. (1) Kant's logical position. The doctrine of synthetic and analytic
judgments—at any rate if this is taken as the corner-stone of Epistemology
—has been so completely rejected by most modern logicians[71], that it
would demand little attention here, but for the fact that an enthusiastic
French Kantian, M. Renouvier, has recently appealed to it, with perfect
confidence, on the very question of Geometry[72]. And it must be owned,
with M. Renouvier, that if such judgments existed, in the Kantian sense,
non-Euclidean Geometry, which makes no appeal to intuition, could have
nothing to say against them. M. Renouvier's contention, therefore, forces
us briefly to review the arguments against Kant's doctrine, and briefly to
discuss what logical canon is to replace it.

Every judgment—so modern logic contends—is both synthetic and
analytic; it combines parts into a whole, and analyses a whole into
parts[73]. If this be so, the distinction of analysis and synthesis, whatever
may be its importance in pure Logic, can have no value in Epistemology.
But such a doctrine, it must be observed, allows full scope to the principle
of contradiction: this criterion, since all judgments, in one aspect at least,
are analytic, is applicable to all judgments alike. On the other hand, the
whole which is analysed must be supposed already given, before the parts
can be mutually contradictory: for only by connection in a given whole
can two parts or adjectives be incompatible. Thus the principle of



contradiction remains barren until we already have some judgments, and
even some inference: for the parts may be regarded, to some extent, as an
inference from the whole, or vice versâ. When once the arch of knowledge
is constructed, the parts support one another, and the principle of
contradiction is the keystone: but until the arch is built, the keystone
remains suspended, unsupported and unsupporting, in the empty air. In
other words, knowledge once existent can be analysed, but knowledge
which should have to win every inch of the way against a critical
scepticism, could never begin, and could never attain that circular
condition in which alone it can stand.

But Kant's doctrine, if true, is designed to restrain a critical scepticism
even where it might be effective. Certain fundamental propositions, he
says, are not deducible from logic, i.e. their contradictories are not self-
contradictory; they combine a subject and predicate which cannot, in any
purely logical way, be shewn to have any connection, and yet these
judgments have apodeictic certainty. But concerning such judgments, Kant
is generally careful not to rely upon the mere subjective conviction that
they are undeniable: he proves, with every precaution, that without them
experience would be impossible. Experience consists in the combination
of terms which formal logic leaves apart, and presupposes, therefore,
certain judgments by which a framework is made for bringing such terms
together. Without these judgments—so Kant contends—all synthesis and
all experience would be impossible. If, therefore, the detail of the Kantian
reasoning be sound, his results may be obtained by the principle of
contradiction plus the possibility of experience, as well as by his
distinction of synthetic and analytic judgments.

Logic, at the present day, arrogates to itself at once a wider and a
narrower sphere than Kant allowed to it. Wider, because it believes itself
capable of condemning any false principle or postulate; narrower, because
it believes that its law of contradiction, without a given whole or a given
hypothesis, is powerless, and that two terms, per se, though they may be
different, cannot be contradictories, but acquire this relation only by
combination in a whole about which something is known, or by connection
with a postulate which, for some reason, must be preserved. Thus no
judgment, per se, is either analytic or synthetic, for the severance of a
judgment from its context robs it of its vitality, and makes it not truly a



judgment at all. But in its proper context it is neither purely synthetic nor
purely analytic; for while it is the further determination of a given whole,
and thus in so far analytic, it also involves the emergence of new relations
within this whole, and is so far synthetic.

57. We may retain, however, a distinction roughly corresponding to the
Kantian à priori and à posteriori, though less rigid, and more liable to
change with the degree of organisation of knowledge. Kant usually
endeavoured to prove, as observed above, that his synthetic à priori
propositions were necessary prerequisites of experience; now although we
cannot retain the term synthetic, we can retain the term à priori, for those
assumptions, or those postulates, from which alone the possibility of
experience follows. Whatever can be deduced from these postulates,
without the aid of the matter of experience, will also, of course, be à
priori. From the standpoint of general logic, the laws of thought and the
categories, with the indispensable conditions of their applicability, will be
alone à priori; but from the standpoint of any special science, we may call
à priori whatever renders possible the experience which forms the subject-
matter of our science. In Geometry, to particularize, we may call à priori
whatever renders possible experience of externality as such.

It is to be observed that this use of the term is at once more rationalistic
and less precise than that of Kant. Kant would seem to have supposed
himself immediately aware, by inspection, that some knowledge was
apodeictic, and its subject-matter, therefore, à priori: but he did not
always deduce its apriority from any further principle. Here, however, it is
to be shown, before admitting apriority, that the falsehood of the judgment
in question would not be effected by a mere change in the matter of
experience, but only by a change which should render some branch of
experience formally impossible, i.e. inaccessible to our methods of
cognition. The above use is also less precise, for it varies according to the
specialization of the experience we are assuming possible, and with every
progress of knowledge some new connection is perceived, two previously
isolated judgments are brought into logical relation, and the à priori may
thus, at any moment, enlarge its sphere, as more is found deducible from
fundamental postulates.

58. (2) Kant's arguments for the apriority of space. Having now
discussed the logical canon to be used as regards the à priori, we may



proceed to test Kant's arguments as regards space. The argument from
Geometry, as remarked above, is upset by Metageometry, at least so far as
those properties are concerned, which belong to Euclid but not to non-
Euclidean spaces; as regards the common properties of both kinds of
space, we cannot decide on their apriority till we have discussed the
consequences of denying them, which will be done in Chapter III. As
regards the two arguments which prove that space is an intuition, not a
concept, they would call for much discussion in a special criticism of
Kant, but here they may be passed by with the obvious comment that
infinite homogeneous Euclidean space is a concept, not an intuition—a
concept invented to explain an intuition, it is true, but still a pure
concept[74]. And it is this pure concept which, in all discussions of
Geometry, is primarily to be dealt with; the intuition need only be referred
to where it throws light on the functions or the nature of the concept. The
second of Kant's arguments, that we can imagine empty space, though not
the absence of space, is false if it means a space without matter anywhere,
and irrelevant if it merely means a space between matters and regarded as
empty[75]. The only argument of importance, then, is the first argument.
But I must insist, at the outset, that our problem is purely logical, and that
all psychological implications must be excluded to the utmost possible
extent. Moreover, as will be proved in Chapter IV., the proper function of
space is to distinguish between different presented things, not between the
Self and the object of sensation or perception. The argument then becomes
the following: consciousness of a world of mutually external things
demands, in presentations, a cognitive but non-inferential element leading
to the discrimination of the objects presented. This element must be non-
inferential, for from whatever number or combination of presentations,
which did not of themselves demand diversity in their objects, I could
never be led to infer the mutual externality of their objects. Kant says: "In
order that sensations may be ascribed to something external to me ... and
similarly in order that I may be able to present them as outside and beside
one another, ... the presentation of space must be already present." But this
goes rather too far: in the first place, the question should be only as to the
mutual externality of presented things, not as to their externality to the
Self[76]; and in the second place, things will appear mutually external if I
have the presentation of any form of externality, whether Euclidean or
non-Euclidean. Whatever may be true of the psychological scope of this



argument—whose validity is here irrelevant—the logical scope extends,
not to Euclidean space, but only to any form of externality which could
exist intuitively, and permit knowledge, in beings with our laws of
thought, of a world of diverse but interrelated things.

Moreover externality, to render the scope of the argument wholly
logical, must not be left with a sensational or intuitional meaning, though
it must be supposed given in sensation or intuition. It must mean, in this
argument, the fact of Otherness[77], the fact of being different from some
other thing: it must involve the distinction between different things, and
must be that element, in a cognitive state, which leads us to discriminate
constituent parts in its object. So much, then, would appear to result from
Kant's argument, that experience of diverse but interrelated things
demands, as a necessary prerequisite, some sensational or intuitional
element, in perception, by which we are led to attribute complexity to
objects of perception[78]; that this element, in its isolation may be called a
form of externality; and that those properties of this form, if any such be
found, which can be deduced from its mere function of rendering
experience of interrelated diversity possible, are to be regarded as à priori.
What these properties are, and how the various lines of argument here
suggested converge to a single result, we shall see in Chapters III. and IV.

59. In the philosophers who followed Kant, Metaphysics, for the most
part, so predominated over Epistemology, that little was added to the
theory of Geometry. What was added, came indirectly from the one
philosopher who stood out against the purely ontological speculations of
his time, namely Herbart. Herbart's actual views on Geometry, which are
to be found chiefly in the first section of his Synechologie, are not of any
great value, and have borne no great fruit in the development of the
subject. But his psychological theory of space, his construction of
extension out of series of points, his comparison of space with the tone
and colour-series, his general preference for the discrete above the
continuous, and finally his belief in the great importance of classifying
space with other forms of series (Reihenformen[79]), gave rise to many of
Riemann's epoch-making speculations, and encouraged the attempt to
explain the nature of space by its analytical and quantitative aspect
alone[80]. Through his influence on Riemann, he acquired, indirectly, a
great importance in geometrical philosophy. To Riemann's dissertation,



which we have already discussed in its mathematical aspect, we must now
return, considering, this time, only its philosophical views.



Riemann.

60. The aim of Riemann's dissertation, as we saw in Chapter I., was to
define space as a species of manifold, i.e. as a particular kind of collection
of magnitudes. It was thus assumed, to begin with, that spatial figures
could be regarded as magnitudes, and the axioms which emerged,
accordingly, determined only the particular place of these among the many
algebraically possible varieties of magnitudes. The resulting formulation
of the axioms—while, from the mathematical standpoint of metrical
Geometry, it was almost wholly laudable—must, from the standpoint of
philosophy, be regarded, in my opinion, as a petitio principii. For when we
have arrived at regarding spatial figures as magnitudes, we have already
traversed the most difficult part of the ground. The axioms of metrical
Geometry—and it is metrical Geometry, exclusively, which is considered
in Riemann's Essay—will appear, in Chapter III., to be divisible into two
classes. Of these, the first class—which contains the axioms common to
Euclid and Metageometry, the only axioms seriously discussed by
Riemann—are not the results of measurement, nor of any conception of
magnitude, but are conditions to be fulfilled before measurement becomes
possible. The second class only—those which express the difference
between Euclidean and non-Euclidean spaces—can be deduced as results
of measurement or of conceptions of magnitude. As regards the first class,
on the contrary, we shall see that the relativity of position—by which
space is distinguished from all other known manifolds, except time—leads
logically to the necessity of three of the most distinctive axioms of
Geometry, and yet this relativity cannot be called a deduction from
conceptions of magnitude. In analytical Geometry, owing to the fact that
coordinate systems start from points, and hence build up lines and
surfaces, it is easy to suppose that points can be given independently of
lines and of each other, and thus the relativity of position is lost sight of.
The error thus suggested by mathematics was probably reinforced by
Herbart's theory of space, which, by its serial character, as we have seen,
appeared to him to facilitate a construction out of successive points, and to
which Riemann acknowledges his indebtedness both in his Dissertation
and elsewhere. The same error reappears in Helmholtz, in whom it is
probably due wholly to the methods of analytical Geometry. It is a striking



fact that, throughout the writings of these two men, there is not, so far as I
know, one allusion to the relativity of position, that property of space from
which, as our next chapter will shew, the richest quarry of consequences
can be extracted. This is not a result of any conception of magnitude, but
follows from the nature of our space-intuition; yet no one, surely, could
call it empirical, since it is bound up in the very possibility of locating
things there as opposed to here.

61. Indeed we can see, from a purely logical consideration of the
judgment of quantity, that Riemann's manner of approaching the problem
can never, by legitimate methods, attain to a philosophically sound
formulation of the axioms. For quantity is a result of comparison of two
qualitatively similar objects, and the judgment of quantity neglects
altogether the qualitative aspect of the objects compared. Hence a
knowledge of the essential properties of space can never be obtained from
judgments of quantity, which neglect these properties, while they yet
presuppose them. As well might one hope to learn the nature of man from
a census. Moreover, the judgment of quantity is the result of comparison,
and therefore presupposes the possibility of comparison. To know whether,
or by what means, comparison is possible, we must know the qualities of
the things compared and of the medium in which comparison is effected;
while to know that quantitative comparison is possible, we must know that
there is a qualitative identity between the things compared, which again
involves a previous qualitative knowledge. When spatial figures have once
been reduced to quantity, their quality has already been neglected, as
known and similar to the quality of other figures. To hope, therefore, for
the qualities of space, from a comparison of its expression as pure quantity
with other pure quantities, is an error natural to an analytical geometer,
but an error, none the less, from which there is no return to the qualitative
basis of spatial quantity.

62. We must entirely dissent, therefore, from the disjunction which
underlies Riemann's philosophy of space. Either the axioms must be
consequences of general conceptions of magnitude, he thinks, or else they
can only be proved by experience (p. 255). Whatever can be derived from
general conceptions of magnitude, we may retort, cannot be an à priori
adjective of space: for all the necessary adjectives of space are
presupposed in any judgment of spatial quantity, and cannot, therefore, be



consequences of such a judgment. Riemann's disjunction, accordingly,
since one of its alternatives is obviously impossible, really begs the
question. In formulating the axioms of metrical Geometry, our question
should be: What axioms, i.e. what adjectives of space, must be
presupposed, in order that quantitative comparison of the parts of space
may be possible at all? And only when we have determined these
conditions, which are à priori necessary to any quantitative science of
space, does the second question arise: what inferences can we draw, as to
space, from the observed results of this quantitative science, i.e. of this
measurement of spatial figures? The conditions of measurement
themselves, though not results of any conception of magnitude, will be à
priori, if it can be shown that, without them, experience of externality
would be impossible.

After this initial protest against Riemann's general philosophical
position, let us proceed to examine, in detail, his use of the notion of a
manifold.

63. In the first place there is, if I am not mistaken, considerable
obscurity in the definition of a manifold, of which an almost verbal
rendering was given in Chapter I. What is meant, to begin with, by a
general conception capable of various determinations? Does not this
property belong to all conceptions? It affords, certainly, a basis for
counting, but if continuous quantity is to arise, we must, surely, have some
less discrete formulation. It might afford a basis, for example, for the
distinction of points in projective Geometry, but projective Geometry has
nothing to do with quantity. Something more fluid and flexible than a
conception, one would think, is necessary as the basis of continua. Then,
again, what is meant by a quantum of a manifold? In space, the answer is
obvious: what is meant is a piece of volume. But how about Riemann's
other continuous manifold, colour? Does a quantum of colour mean a
single line in the spectrum, or a band of finite thickness? In either case,
what are the magnitudes to be compared? And how is superposition
necessary, or even possible? A colour is fixed by its position in the
spectrum: two lines in the same spectrum cannot be superposed, and two
lines in different spectra need not be—their positions in their respective
spectra suffice, or even, roughly, their immediate sense-quality. The fact
is, Riemann had space in his mind from the start, and many of the



properties, which he enunciates as belonging to all manifolds, belong, as a
matter of fact, only to space. It is far from clear what the magnitudes are
which the various determinations make possible. Do these magnitudes
measure the elements of the manifold, or the relations between elements?
This is surely a very fundamental point, but it is one which Riemann never
touches on. In the former case, the superposition which he speaks of
becomes unnecessary, since the magnitude is inherent in the element
considered. We do not require superposition to measure quantities
corresponding to different tones or colours; these can be discovered by
analysis of single tones or colours. With space, on the other hand, if we
seek for elements, we can find none except points, and no analysis of a
point will find magnitudes inherent in it—such magnitudes are a fiction of
coordinate Geometry. The magnitudes which space deals with, as we shall
see in Chapter III., are relations between points, and it is for this reason
that superposition is essential to space-measurement. There is no inherent
quality in a single point, as there is in a single colour, by which it can be
quantitatively distinguished from another. Thus the conception of a
manifold, as defined by Riemann, either does not include colours, or does
not involve superposition as the only means of measurement. From this
dilemma there is no escape.

64. But if "measurement consists in a superposition of the magnitudes
compared" (p. 256), does it not follow immediately that measurement is
logically possible only where such superposition leaves the magnitudes
unchanged? And therefore that measurement, as above defined, involves,
as an à priori condition, that magnitudes are unchanged by motion? This
consequence is not drawn by Riemann; indeed he proceeds immediately
(pp. 256–7) to consider what he calls a general portion of the doctrine of
magnitude (Grössenlehre), independent of measurement. But how is any
doctrine of magnitude possible, in which the magnitudes cannot be
measured? The reason of the confusion is, that Riemann's definition of
measurement is applicable to no single manifold except space, since it
depends on the noteworthy property that what we measure in Geometry is
not points, but relations between points, and the latter, though not the
former, may of course be unaltered by motion. Let us try, in illustration, to
apply Riemann's definition of measurement to colours. We must
remember that motion, in dealing with the colour manifold, means—not
motion in space but—motion in the colour manifold itself. Now since



every point of the colour manifold is completely determined by three
magnitudes, which are given in fact, and cannot be arbitrarily chosen, it is
plain that measurement by superposition—involving, as it does, motion,
and therefore change in these determining magnitudes—is totally out of
the question. The superposition of one colour on another, as a means of
measurement, is sheer nonsense. And yet measurement is possible in the
colour-manifold, by means of Helmholtz's law of mixture
(Mischungsgesetz); but the measurement is of every separate element, not
of the relations between elements, and is thus radically different from
space-measurement[81]. The elements are not, like points in space,
qualitatively alike, and distinguished by the mere fact of their mutual
externality. What we have, in colours, is three fundamental qualitatively
distinct elements, out of certain proportions of which we can build up all
the other elements of the manifold—each of the resulting elements having
the same combination of qualitative diversity and similarity as the three
original elements. But in space, what could we make of such a procedure?
Given three points, how are we to combine them in certain proportions?
The phrase is meaningless. If some one makes the obvious retort, that we
have to combine lines, not points, my rejoinder is equally obvious. To
begin with, lines are not elements. Metaphysically, space has no elements,
being, as the sequel will show, mere relations between non-spatial
elements. Mathematically, this fact exhibits itself in the self-contradictory
notion of the point, or zero magnitude in space, as the limit in our vain
search for spatial elements. But even if we allow the line to pass as the
spatial element, what does the combination of three lines in definite
proportions give us? It gives us, simply, the coordinates of a point. Here
again we see a great difference between the colour and space-manifolds. In
colours, the combination of magnitudes gives a new magnitude of the
same kind; in space, it defines, not a magnitude at all, but a would-be
element of a different kind from the defining magnitudes. In the tone-
manifold, we should find still different conditions. Here, no one of the
measuring magnitudes can vanish without the tone vanishing too, and all
three are so bound up together, in the single resulting sensation, that none
can exist without a finite quantity of the others. They are all qualitatively
different, both from each other, and from any possible tone, being
constituents of it, as mass and velocity are constituents of momentum. All
these different conditions require to be examined, before a manifold can



be completely defined; and until we have conducted such an examination
in detail, we cannot pronounce as to the à priori or empirical nature of the
laws of the manifold. As regards space, I have attempted such an
examination in the third and fourth chapters of this Essay.

65. I do not wish to deny, however, the great value of the conception of
space as a manifold. On the contrary, this conception seems to have
become essential to any treatment of the question. I only wish to urge that
the purely algebraical treatment of any manifold, important as it may be in
deducing fresh consequences from known premisses, tends rather to
conceal than to make clear the basis of the premisses themselves, and is
therefore misleading in a philosophical investigation. For mathematics,
where quantity reigns supreme, Riemann's conception has proved itself
abundantly fruitful; for philosophy, on the contrary, where quantity
appears rather as a cloak to conceal the qualities it abstracts from, the
conception seems to me more productive of error and confusion than of
sound doctrine.

We are thus brought back to the point from which we started, namely,
the falsity of Riemann's initial disjunction, and the consequent fallacy in
his proof of the empirical nature of the axioms. His philosophy is chiefly
vitiated, to my mind, by this fallacy, and by the uncritical assumption that
a metrical coordinate system can be set up independently of any axioms as
to space-measurement[82]. Riemann has failed to observe, what I have
endeavoured to prove in the next chapter, that, unless space had a strictly
constant measure of curvature, Geometry would become impossible; also
that the absence of constant measure of curvature involves absolute
position, which is an absurdity. Hence he is led to the conclusion that all
geometrical axioms are empirical, and may not hold in the infinitesimal,
where observation is impossible. Thus he says (p. 267): "Now the
empirical conceptions, on which spatial measurements are based, the
conceptions of the rigid body and the light-ray, appear to lose their validity
in the infinitesimal: it is therefore quite conceivable that the relations of
spatial magnitudes in the infinitesimal do not correspond to the
presuppositions of Geometry, and this would, in fact, have to be assumed,
as soon as it would enable us to explain the phenomena more simply."
From this conclusion I must entirely dissent. In very large spaces, there
might be a departure from Euclid; for they depend upon the axiom of



parallels, which is not contained in the axiom of Free Mobility; but in the
infinitesimal, departures from Euclid could only be due to the absence of
Free Mobility, which, as I hope my third chapter will show, is once for all
impossible.



Helmholtz.

66. Helmholtz, like Riemann, was important both in the mathematics
and in the philosophy of Geometry. From the mathematical point of view,
his work has been already considered in Chapter I.; the consideration of his
philosophy, which must occupy us here, will be a more serious task. Like
Riemann, he endeavoured to prove that all the axioms are empirical, and
like Riemann, he based his proof chiefly on Metageometry. He had an
additional resource, however, in the physiology of the senses, which first
led him to reject the Transcendental Aesthetic, and enabled him to attack
Kant from the psychological as well as the mathematical side[83].

The principal topics, for a criticism of Helmholtz, are three: First, his
criterion of the à priori; second, his discussion with Land as to the
"imaginability" of non-Euclidean spaces; third—and this is by far the most
important of the three—his theory of the dependence of Geometry on
Mechanics. Let us discuss these three points successively.

67. Helmholtz's criterion of apriority is difficult to discover, as he
never, to my knowledge, gives a precise statement of it. From his
discussion of physical and transcendental Geometry[84], however, it would
appear that he regards as empirical whatever applies to empirical matter.
For he there maintains, that even if space were an à priori form, yet any
Geometry, which aimed at an application to Physics, would, since the
actual places of bodies are not known à priori, be necessarily
empirical[85]. It seems the more probable that he regards this as a possible
criterion, as it is adopted, in several passages, by his disciple Erdmann[86],
and so strange a test could hardly be accepted by a philosopher, unless he
had found it in his master. I have called this a strange test, because it
seems to me completely to ignore the work of the Critical Philosophy. For
if there is one thing which, one might have hoped, had been made
sufficiently clear by Kant's Critique, it is this, that knowledge which is à
priori, being itself the condition of possible experience, applies—and in
Kant's view, applies only—to empirical matter. Helmholtz and Erdmann,
therefore, in setting up this test without discussion, simply ignore the
existence of Kant and the possibility of a transcendental argument.



Helmholtz assumes always that empirical knowledge must be wholly
empirical, that there can be no à priori conditions of the experience in
question, that experience will always be possible, and may give any kind
of result. Thus in discussing "physical" Geometry, he assumes that the
possibility of empirical measurement involves no à priori axioms, and
that no à priori element can be contained in the process. This assumption,
as we shall see in Chapter III., is quite unwarrantable: certain properties of
space, in fact, are involved in the possibility of measuring matter. In spite
of the fact, therefore, that we apply measurement to empirical matter, and
that our results are therefore empirical, there may well be an à priori
element in measurement, which is presupposed in its possibility. Such a
criterion, therefore, must pronounce everything empirical, but must itself
be pronounced worthless.

Another and a better criterion, it is true, is also to be found in
Helmholtz, and has also been adopted by Erdmann. Whatever might, by a
different experience, have been rendered different—so this criterion
contends—must itself be dependent on experience, and so empirical. This
criterion seems perfectly sound, but Helmholtz's use of it is usually
vitiated by his neglecting to prove the possibility of the different
experience in question. He says, for example, that if our experience
showed us only bodies which changed their shapes in motion, we should
not arrive at the axiom of Congruence, which he pronounces accordingly
to be empirical. But I shall endeavour to prove, in Chapter III., that without
the axiom of Congruence, experience of spatial magnitude would be
impossible. If my proof be correct, it follows that no experience can ever
reveal spatial magnitudes which contradict this axiom—a possibility
which Helmholtz nowhere discusses, in setting up his hypothetical
experience. Thus this second criterion, though perfectly sound, requires
always an accompanying transcendental argument, as to the conditions of
possible experience. But this accompaniment is seldom to be found in
Helmholtz.

68. One of the few cases, in which Helmholtz has attempted such an
accompaniment, occurs in connection with our second point, the
imaginability of non-Euclidean spaces. The argument on this point was
elicited by Helmholtz's Kantian opponents, who maintained that the
merely logical possibility of these spaces was irrelevant, since the basis of



Geometry was not logic, but intuition. The axioms, they said, are synthetic
propositions, and their contraries are, therefore, not self-contradictory;
they are nevertheless apodeictic propositions, since no other intuition than
the Euclidean is possible to us[87]. I have already criticized this line of
argument in the beginning of the present chapter. Helmholtz's criticism,
however, was different: admitting the internal consistency of the
argument, he denied one of its premisses. We can imagine non-Euclidean
spaces, he said, though their unfamiliarity makes this difficult. From this
view it followed, of course, that Kant's argument, even if it were formally
valid, could not prove the apriority of Euclidean space in particular, but
only of that general space which included Euclid and non-Euclid alike[88].

Although I agree with Helmholtz in thinking the distinction between
Euclidean and non-Euclidean spaces empirical, I cannot think his
argument on the "imaginability" of the latter a very happy one. The
validity of any proof must turn, obviously, on the definition of
imaginability. The definition which Helmholtz gives in his answer to Land
is as follows: Imaginability requires "die vollständige Vorstellbarkeit
derjenigen Sinneseindrücke, welche das betreffende Object in uns nach
den bekannten Gesetzen unserer Sinnesorgane unter allen denkbaren
Bedingungen der Beobachtung erregen, und wodurch es sich von anderen
ähnlichen Objecten unterscheiden würde" (Wiss. Abh. II. p. 644). This
definition is not very clear, owing to the ambiguity of the word
"Vorstellbarkeit." The following definition seems less ambiguous: "Wenn
die Reihe der Sinneseindrücke vollständig und eindeutig angegeben
werden kann, muss man m. E. die Sache für anschaulich vorstellbar
erklären" (Vorträge und Reden, II. p. 234). This makes clear, what also
appears from his manner of proof, that he regards things as imaginable
which can be described in conceptual terms. Such, as Land remarks (Mind,
Vol. II. p. 45), "is not the sense required for argumentation in this case."
That Land's criticism is just, is shown by Helmholtz's proof for non-
Euclidean spaces, for it consists only in an analogy to the volume inside a
sphere, which is mathematically obtained thus: We take the symbols
representing magnitudes in "pseudo-spherical" (hyperbolic) space, and
give them a new Euclidean meaning; thus all our symbolic propositions
become capable of two interpretations, one for pseudo-spherical space,
and one for the volume inside a sphere. It is, however, sufficiently obvious



that this procedure, though it enables us to describe our new space, does
not enable us to imagine it, in the sense of calling up images of the way
things would look in it. We really derive, from this analogy, no more
knowledge than a man born blind may derive, as to light, from an analogy
with heat. The dictum "Nihil est in intellectu quod non fuerit ante in
sensu," would unquestionably be true, if for intellect we were to substitute
imagination; it is vain, therefore, if our actual space be Euclidean, to hope
for a power of imagining a non-Euclidean space. What Helmholtz might, I
believe with perfect truth, have urged against Land, is that the image we
actually have of space is not sufficiently accurate to exclude, in the actual
space we know, all possibility of a slight departure from the Euclidean
type. But in maintaining that we cannot imagine, though we can conceive
and describe, a space different from that we actually have, Land is, in my
opinion, unquestionably in the right. For a pure Kantian, who maintains,
with Land, that none of the axioms can be proved, this question is of great
importance. But if, as I have maintained, some of the axioms are
susceptible of a transcendental proof, while the others can be verified
empirically, the question is freed from psychological implications, and the
imaginability or non-imaginability of metageometrical spaces becomes
unimportant.

69. We come now to the third and most important question, the relation
of Geometry to Mechanics. There are three senses in which Helmholtz's
appeal to rigid bodies may be taken: the first, I think, is the sense in which
he originally intended it; the second seems to be the sense which he
adopted in his defence against Land; while the third is admitted by Land,
and will be admitted in the following argument. These three senses are as
follows:

(1) It may be asserted that the actual meaning of the axiom of Free
Mobility lies in the assertion of empirical rigid bodies, and that the two
propositions are equivalent to one another. This is certainly false.

(2) The axiom of Free Mobility, it may be said, is logically
distinguishable from the assertion of rigid bodies, and may even be not
empirical; but it is barren, even for pure Geometry, without the aid of
measures, which must themselves be empirical rigid bodies. This sense is
more plausible than the first, but I believe we can show that, in this sense
also, the proposition is false.



(3) For pure Geometry and the abstract study of space, it may be said,
Free Mobility, as applied to an abstract geometrical matter, gives a
sufficient possibility of quantitative comparison; but the moment we
extend our results to mixed mathematics, and apply them to empirically
given matter, we require also, as measures, empirically given rigid bodies,
or bodies, at least, whose departures from rigidity are empirically known.
In this sense, I admit, the proposition is correct[89].

In discussing these three meanings, I shall not confine myself strictly to
the text of Helmholtz or Land: if I endeavoured to do so, I should be met
by the difficulty that neither of them defines the à priori, and that each is
too much inclined, in my opinion, to test it by psychological criteria. I
shall, therefore, take the three meanings in turn, without laying stress on
their historical adequacy to the views of Land or Helmholtz.

70. (1) Congruence may be taken to mean—as Helmholtz would
certainly seem to desire—that we find actual bodies, in our mechanical
experience, to preserve their shapes with approximate constancy, and that
we infer, from this experience, the homogeneity of space. This view, in my
opinion, radically misconceives the nature of measurement, and of the
axioms involved in it. For what is meant by the non-rigidity of a body? We
mean, simply, that it has changed its shape. But this involves the
possibility of comparison with its former shape, in other words, of
measurement. In order, therefore, that there may be any question of
rigidity or non-rigidity, the measurement of spatial magnitudes must be
already possible. It follows that measurement cannot, without a vicious
circle, be itself derived from experience of rigid bodies. Geometrical
measurement, in fact, is the comparison of spatial magnitudes, and such
comparison involves, as will be proved at length in Chapter III., the
homogeneity of space. This is, therefore, the logical prerequisite of all
experience of rigid bodies, and cannot be the result of such experience.
Without the homogeneity of space, the very notion of rigidity or non-
rigidity could not exist, since these mean, respectively, the constancy or
inconstancy of spatial magnitude in pieces of matter, and both alike,
therefore, presuppose the possibility of spatial measurement. From the
homogeneity of space, we learn that a body, when it moves, will not
change its shape without some physical cause; that it actually does not
change its shape, is never asserted, and is indeed known to be false. As



soon as measurement is possible, actual changes of shape can be
estimated, and their empirical causes can be sought. But if space were not
homogeneous, measurement would be impossible, constant shape would
be a meaningless phrase, and rigidity could never be experienced.
Congruence asserts, in short, that a body can, so far as mere space is
concerned, move without change of shape; rigidity asserts that it actually
does so move—a very different proposition, involving obviously, as its
logical prius, the former geometrical proposition.

This argument may be summed up by the following disjunction: If
bodies change their shapes in motion—and to some extent, since no body
is perfectly rigid, they must all do so—then one of two cases must occur.
Either the changes of shape, as bodies move from place to place, follow no
geometrical law, are not, for instance, functions of the amount or direction
of motion; in which case the law of causation requires that they should not
be effects of the change of place, but of some simultaneous non-
geometrical change, such as temperature. Or the changes are regular, and
the shape S becomes, in a new position p, Sf(p). In this case, the law of
concomitant variations leads us to attribute the change of shape to the
mere motion, and shape thus becomes a function of absolute position. But
this is absurd, for position means merely a relation or set of relations; it is
impossible, therefore, that mere position should be able to effect changes
in a body. Position is one term in a relation, not a thing per se; it cannot,
therefore, act on a thing, nor exist by itself, apart from the other terms of
the relation. Thus Helmholtz's view, that Congruence depends on the
existence of rigid bodies, must, since it involves absolute position, be
condemned as a logical fallacy. Congruence, in fact, as I shall prove more
fully in Chapter III., is an à priori deduction from the relativity of position.

71. (2) The above argument seems to me to answer satisfactorily
Helmholtz's contention in the precise form which he first gave it. The
axiom of Congruence, we must agree, is logically distinguishable from the
existence of rigid bodies. Nevertheless some reference to matter is
logically involved in Geometry[90], but whether this reference makes
Geometry empirical, or does not, rather, show an à priori element in
dynamics, is a further question.

The reference to matter is necessitated by the homogeneity of empty
space. For so long as we leave matter out of account, one position is



perfectly indistinguishable from another, and a science of the relations of
positions is impossible. Indeed, before spatial relations can arise at all, the
homogeneity of empty space must be destroyed, and this destruction must
be effected by matter. The blank page is useless to the geometer until he
defaces its homogeneity by lines in ink or pencil. No spatial figures, in
short, are conceivable, without a reference to a not purely spatial matter.
Again, if Congruence is ever to be used, there must be motion: but a
purely geometrical point, being defined solely by its spatial attributes,
cannot be supposed to move without a contradiction in terms. What
moves, therefore, must be matter. Hence, in order that motion may afford a
test of equality, we must have some matter which is known to be
unaffected throughout the motion, that is, we must have some rigid bodies.
And the difficulty is, that these bodies must not only undergo no change
due solely to the nature of space, but must, further, be unchanged by their
changing relation to other bodies. And here we have a requisite which can
no longer be fulfilled à priori: which, indeed, we know to be, in strictness,
untrue. For the forces acting on a body depend upon its spatial relations to
other bodies, and changing forces are liable to produce changing
configuration. Hence, it would seem, actual measurement must be purely
empirical, and must depend on the degree of rigidity to be obtained, during
the process of measurement, in the bodies with which we are conversant.

This conclusion, I believe, is valid of all actual measurement. But the
possibility of such empirical and approximate rigidity, I must insist,
depends on the à priori law that mere motion, apart from the action of
other matter, cannot effect a change of shape. For without this law, the
effect of other matter would not be discoverable; the laws of motion would
be absurd, and Physics would be impossible. Consider the second law, for
example: How could we measure the change of motion, if motion itself
produced a change in our measures? Or consider the law of gravitation:
How could we establish the inverse square, unless we were able,
independently of Dynamics, to measure distances? The whole science of
Dynamics, in short, is fundamentally dependent on Geometry, and but for
the independent possibility of measuring spatial magnitudes, none of the
magnitudes of Dynamics could be measured. Time, force, and mass are
alike measured by spatial correlates: these correlates are given, for time,
by the first law, for force and mass, by the second and third. It is true, then,
that an empirical element appears unavoidably in all actual measurement,



inasmuch as we can only know empirically that a given piece of matter
preserves its shape throughout the necessary change of dynamical
relations to other matter involved in motion; but it is further true that, for
Geometry—which regards matter simply as supplying the necessary
breach in the homogeneity of space, and the necessary term for spatial
relations, not as the bearer of forces which change the configuration of
other material systems—for Geometry, which deals with this abstract and
merely kinematical matter, rigidity is à priori, in so far as the only
changes with which it is cognizant—changes of mere position, namely—
are incapable of affecting the shapes of the imaginary and abstract bodies
with which it deals. To use a scholastic distinction, we may say that matter
is the causa essendi of space, but Geometry is the causa cognoscendi of
Physics. Without a Geometry independent of Physics, Physics itself, which
necessarily assumes the results of Geometry, could never arise; but when
Geometry is used in Physics, it loses some of its à priori certainty, and
acquires the empirical and approximate character which belongs to all
accounts of actual phenomena.

72. (3) This argument leads us to Land's distinction of physical and
geometrical rigidity. The distinction may be expressed—and I think it is
better expressed—by distinguishing between the conceptions of matter
proper to Dynamics and to Geometry respectively. In Dynamics, we are
concerned with matter as subject to and as causing motion, as affected by
and as exerting force. We are therefore concerned with the changes of
spatial configuration to which material systems are liable: the description
and explanation of these changes is the proper subject-matter of all
Dynamics. But in order that such a science may exist, it is obviously
necessary that spatial configuration should be already measurable. If this
were not the case, motion, acceleration and force would remain perfectly
indeterminate. Geometry, therefore, must already exist before Dynamics
becomes possible: to make Geometry dependent for its possibility on the
laws of motion or any of their consequences, is a gross ὕστερον πρότερον.
Nevertheless, as we have seen, some sort of matter is essential to
Geometry. But this geometrical matter is a more abstract and wholly
different matter from that of Dynamics. In order to study space by itself,
we reduce the properties of matter to a bare minimum: we avoid entirely
the category of causation, so essential to Dynamics, and retain nothing, in



our matter, but its spatial adjectives[91]. The kind of rigidity affirmed of
this abstract matter—a kind which suffices for the theory of our science,
though not for its application to the objects of daily life—is purely
geometrical, and asserts no more than this: That since our matter is
devoid, ex hypothesi, of causal properties, there remains nothing, in mere
empty space, which is capable of changing the configuration of any
geometrical system. A change of absolute position, it asserts, is nothing;
therefore the only real change involved in motion is a change of relation to
other matter; but such other matter, for the purposes of our science, is
regarded as destitute of causal powers; hence no change can occur, in the
configuration of our system, by the mere effect of motion through empty
space. The necessity of such a principle may be shown by a simple
reductio ad absurdum, as follows. A motion of translation of the universe
as a whole, with constant direction and velocity, is dynamically
negligeable; indeed it is, philosophically, no motion at all, for it involves
no change in the condition or mutual relations of the things in the
universe. But if our geometrical rigidity were denied, the change in the
parameter of space might cause all bodies to change their shapes owing to
the mere change of absolute position, which is obviously absurd.

To make quite plain the function of rigid bodies in Geometry, let us
suppose a liquid geometer in a liquid world. We cannot suppose the liquid
perfectly homogeneous and undifferentiated, in the first place because
such a liquid would be indistinguishable from empty space, in the second
place because our geometer's body—unless he be a disembodied spirit—
will itself constitute a differentiation for him. We may therefore assume

"dim beams,
Which amid the streams

Weave a network of coloured light,"

and we may suppose this network to form the occasion for our geometer's
reflections. Then he will be able to imagine a network in which the lines
are straight, or circular, or parabolic, or any other shape, and he will be
able to infer that such a network, if it can be woven in one part of the fluid,
can be woven in another. This will form sufficient basis for his deductions.
The superposition he is concerned with—since not actual equality, but
only the formal conditions of equality, are the subject-matter of Geometry
—is purely ideal, and is unaffected by the impossibility of congealing any



actual network. But in order to apply his Geometry to the exigencies of
life, he would need some standard of comparison between actual networks,
and here, it is true, he would need either a rigid body, or a knowledge of
the conditions under which similar networks arose. Moreover these
conditions, being necessarily empirical, could hardly be known apart from
previous measurement. Hence for applied, though not for pure Geometry,
one rigid body at least seems essential.

73. The utility, for Dynamics, of our abstract geometrical matter, is
sufficiently evident. For having, by its means, a power of determining the
configurations of material systems in whatever part of space, and knowing
that changes of configuration are not due to mere change of place, we are
able to attribute these changes to the action of other matter, and thus to
establish the notion of force, which would be impossible if change of
shape might be due to empty space.

Thus, to conclude: Geometry requires, if it is to be practically possible,
some body or bodies which are either rigid (in the dynamical sense), or
known to undergo some definite changes of shape according to some
definite law. (These changes, we may suppose, are known by the laws of
Physics, which have been experimentally established, and which
throughout assume the truth of Geometry.) One or more such bodies are
necessary to applied Geometry—but only in the sense in which rulers and
compasses are necessary. They are necessary as, in making the Ordnance
Survey, an elaborate apparatus was necessary for measuring the base line
on Salisbury Plain. But for the theory of Geometry, geometrical rigidity
suffices, and geometrical rigidity means only that a shape, which is
possible in one part of space, is possible in any other. The empirical
element in practice, arising from the purely empirical nature of physical
rigidity, is comparable to the empirical inaccuracies arising from the
failure to find straight lines or circles in the world—which no one but Mill
has regarded as rendering Geometry itself empirical or inaccurate. But to
make Geometry await the perfection of Physics, is to make Physics, which
depends throughout on Geometry, forever impossible. As well might we
leave the formation of numbers until we had counted the houses in
Piccadilly.



Erdmann.

74. In connection with Riemann and Helmholtz, it is natural to consider
Erdmann's philosophical work on their theories[92]. This is certainly the
most important book on the subject which has appeared from the
philosophical side, and in spite of the fact that, like the whole theory of
Riemann and Helmholtz, it is inapplicable to projective Geometry, it still
deserves a very full discussion.

Erdmann agrees throughout with the conclusions of Riemann and
Helmholtz, except on a few points of minor importance; and his views, as
this agreement would lead one to expect, are ultra-empirical. Indeed his
logic seems—though I say this with hesitation—to be incompatible with
any system but that of Mill: there is apparently no distinction, to him,
between the general and the universal, and consequently no concept not
embodied in a series of instances. Such a theory of logic, to my mind,
vitiates most of his work, as it vitiated Riemann's philosophy[93]. This
general criticism will find abundant illustration in the course of our
account of Erdmann's views.

75. After a general introduction, and a short history of the development
of Metageometry, Erdmann proceeds, in his second chapter, to discuss
what are the axioms of Euclidean Geometry. The arithmetical axioms, as
they are called, he leaves aside, as applying to magnitude in general; what
we want here, he says, is a definition of space, for which the geometrical
axioms are alone relevant. But a definition of space, he says—following
Riemann—demands a genus of which space shall be a species, and this,
since our space is psychologically unique, can only be furnished by
analytical mathematics (p. 36). Now the space-forms dealt with by
Geometry are magnitudes, and conceptions of magnitude are everywhere
applied in Geometry. But before Riemann, only particular determinations
of space could be exhibited as magnitudes, and thus the desired definition
was impossible to obtain. Now, however, we can subsume space as a whole
under a general conception of magnitude, and thus obtain, besides the
space-intuition and the space-conception, a third form, namely, the
conception of space as a magnitude (Grössenbegriff vom Raum, pp. 38–
39). The definition of this will give us the complete, but not redundant,



system of axioms, which could not be obtained by transforming the
general intuition of space into the space-conception, for want of a plurality
of instances (p. 40).

76. Before considering the subsequent method of definition, let us
reflect on the theories involved in the above account of the conception of
space as a magnitude. In the first place, it is assumed that conceptions
cannot be formed unless we have a series of separate objects from which
to abstract a common property—in other words, that the universal is
always the general. In the second place, it is assumed that all definition is
classification under a genus. In the third place, the conception of
magnitude, if I am not mistaken, is fundamentally misunderstood when it
is supposed applicable to space as a whole. But in the fourth place, even if
such a conception existed, it could give none of the essential properties of
space. Let us consider these four points successively.

77. As regards the first point, it is to be observed that people certainly
had some conception of space before Riemann invented the notion of a
manifold, and that this conception was certainly something other than the
common qualities of all the points, lines or figures in space. In the second
place, Erdmann's view would make it impossible to conceive God, unless
one were a polytheist, or the universe—unless, like Leibnitz, one imagined
a series of possible worlds, set over against God, and none of them,
therefore, a true Universe—or, to take an instance more likely to appeal to
an empiricist, the necessarily unique centre of mass of the material
universe. Any universal, in short, which is a bond or unity between things,
and not merely a common property among independent objects, becomes
impossible on Erdmann's view. We cannot, therefore, unless we adopt
Mill's philosophy intact, regard the conception of space as demanding a
series of instances from which to abstract. But even if we did so regard it,
Riemann's manifolds would leave us without resources. For Euclidean
space still appears as unique, at the end of his series of determinations. We
have instances of manifolds, but not instances of Euclidean space. Thus if
Erdmann's theory of conceptions were correct, he would still be left
searching in vain for the conception of Euclidean space.

78. The second point, the view that all definition is classification, is
closely allied to the first, and the two together plunge us into the depths of
scholastic formal logic. The same instances of things which could not, on



Erdmann's view, be conceived, may now be adduced as things which
cannot be defined. Whatever was said above applies here also, and the
point need not, therefore, be further discussed[94].

79. As regards the third point, the impossibility of applying conceptions
of magnitude to space as a whole, a longer argument will be necessary, for
we are concerned, here, with the whole question of the logical nature of
judgments of magnitude. As we had before too much comparison for our
needs, so we have now too little. I will endeavour to explain this point,
which is of great importance, and underlies, I think, most of the
philosophical fallacies of Riemann's school.

A judgment of magnitude is always a judgment of comparison, and what
is more, the comparison is never concerned with quality, but only with
quantity. Quality, in the judgment of magnitude, is supposed identical, in
the object whose magnitude is stated, and in the unit with which it is
compared. But quality, except in pure number, and in pure quantity as
dealt with by the Calculus, is always present, and is partly absorbed into
quantity, partly untouched by the judgment of magnitude. As Bosanquet
says (Logic, Vol. I. p. 124); "Quantitative comparison is not prima facie
coordinate with qualitative, but rather stands in its place as the effect of
comparison on quality, which so far as comparable becomes quantity, and
so far as incomparable furnishes the distinction of parts essential to the
quantitative whole" (italics in the original). Thus, if we are to regard space
as a magnitude, we must be able to adduce all those series of instances of
which Erdmann speaks, and which, for the conception of space, seemed
irrelevant. But it remains to be proved that the comparison, which we can
institute between various spaces, is capable of expression in a quantitative
form. Rather it would seem that the difference of quality is such as to
preclude quantitative comparison between different spaces, and therefore
also to preclude all judgments of magnitude about space as a whole. Here
an exception might seem to be demanded by non-Euclidean spaces, whose
space-constants give a definite magnitude, inherent in space as a whole,
and therefore, one might think, characterizing space as a magnitude. But
this is a mistake. For the space-constant, in such spaces, is the ultimate
unit, the fixed term in all quantitative comparison; it is itself, therefore,
destitute of quantity, since there is no independently given magnitude with
which to compare it. A non-Euclidean world, in which the space-constant



and all lines and figures were suddenly multiplied in a constant ratio,
would be wholly unchanged; the lines, as measured against the space-
constant, would have the same magnitude as before, and the space-
constant itself, having no outside standard of comparison, would be
destitute of quantity, and therefore not subject to change of quantity. Such
an enlargement of a non-Euclidean world, in other words, is unmeaning;
and this proves how inapplicable is the notion of quantity to space as a
whole.

It might be objected that this only proves the absence of quantitative
difference between different spaces of positive space-constant, or between
those of negative space-constant: the quantitative difference persists, it
might be said, between those of positive curvature in general and those of
negative curvature in general, or between both together and Euclidean
space. This I entirely deny. There is no qualitatively similar unit, in the
three kinds of space, by which quantitative comparison could be effected.
The straight lines of one space cannot be put into the other: the two
straight lines, in one space, whose product is the reciprocal of the measure
of curvature, have no corresponding curves in the other space, and the
measures of curvature cannot, therefore, be quantitatively compared with
each other. That the one may be regarded as positive, the other negative, I
admit, but their values are indeterminate, and the units in the two cases are
qualitatively different. A debt of £300 may be represented as the asset of -
£300, and the height of the Eiffel Tower is +300 metres; but it does not
follow that the two are quantitatively comparable. So with space-
constants: the space-constant is itself the unit for magnitudes in its own
space, and differs qualitatively from the space-constant of another kind of
space.

Again, to proceed to a more philosophical argument, two different
spaces cannot co-exist in the same world: we may be unable to decide
between the alternatives of the disjunction, but they remain, none the less,
absolutely incompatible alternatives. Hence we cannot get that coexistence
of two spaces which is essential to comparison. The fact seems to be that
Erdmann, in his admiration for Riemann and Helmholtz, has fallen in with
their mathematical bias, and assumed, as mathematicians naturally tend to
assume, that quantity is everywhere and always applicable and adequate,



and can deal with more than the mere comparison of things whose
qualities are already known as similar[95].

80. This suggests the fourth and last of the above points, that the
qualities of space, even if space could be successfully regarded as a
magnitude, would have to be entirely omitted in such a manner of
regarding it, and that, therefore, none of its important or essential
properties would emerge from such treatment. For to regard space as a
magnitude involves, as we saw, a comparison with something qualitatively
similar, and an abstraction from the similar qualities. To some extent and
by the help of certain doubtful arguments, such a comparison is instituted
by Riemann and Erdmann; but when they have instituted it, they forget all
about the common qualities on which its possibility depends. But these are
precisely the fundamental properties of space, and those from which, as I
shall endeavour to prove in Chapter III., the axioms common to Euclid and
Metageometry follow à priori. Such are the dangers of the quantitative
bias.

81. After this protest against the initial assumptions in Erdmann's
deduction of space, let us return to consider the manner, in which this
deduction is carried out. Here there will be less ground for criticism, as the
deduction, given its presuppositions, is, I think, as good as such a
deduction can be. To define space as a magnitude, he says, let us start with
two of its most obvious properties, continuity and the three dimensions.
Tones and colours afford other instances of a manifold with these two
properties, but differ from space in that their dimensions are not
homogeneous and interchangeable. To designate this difference, Erdmann
introduces a useful pair of terms: in the general case, he calls a manifold
n-determined (n-bestimmt); in the case where, as in space, the dimensions
are homogeneous, he calls the manifold n-extended (n-ausgedehnt).
Manifolds of the latter sort he calls extents (Ausgedehntheiten). That the
difference between the two kinds is one of quality, not of quantity, he
seems not to perceive; he also overlooks the fact that, in the second kind,
from its very definition, the axiom of Congruence must hold, on account
of the qualitative similarity of different parts. In spite of this fact, he
defines space as an extent, and then regards Congruence as empirical, and
as possibly false in the infinitesimal. This is the more strange, as he
actually proves (p. 50) that measurement is impossible, in an extent,



unless the parts are independent of their place, and can be carried about
unaltered as measures. In spite of this, he proceeds immediately to discuss
whether the measure of curvature is constant or variable, without
investigating how, in the latter case, Geometry could exist. We cannot
know, he says, from geometrical superposition, that geometrical bodies are
independent of place, for if their dimensions altered in motion according
to any fixed law, two bodies which could be superposed in one place could
be superposed in any other. That such a hypothesis involves absolute
position, and denies the qualitative similarity of the parts of space, which
he declares (p. 171) to be the principle of his theory of Geometry, is
nowhere perceived. But what is more, his notion that magnitude is
something absolute, independent of comparison, has prevented him from
seeing that such a hypothesis is unmeaning. He says himself that, even on
this hypothesis, a geometrical body can be defined as one whose points
retain constant distances from each other, for, since we have no absolute
measure, measurement could not reveal to us the change of absolute
magnitude (p. 60). But is not this a reductio ad absurdum? For magnitude
is nothing apart from comparison, and the comparison here can only be
effected by superposition; if, then, as on the above hypothesis,
superposition always gives the same result, by whatever motion it is
effected, there is no sense in speaking of magnitudes as no longer equal
when separated: absolute magnitude is an absurdity, and the magnitude
resulting from comparison does not differ from that which would result if
the dimensions of bodies were unchanged in motion. Therefore, since
magnitude is only intelligible as the result of comparison, the dimensions
of bodies are unchanged in motion, and the suggested hypothesis is
unmeaning. On this subject I shall have more to say in Chapter III.[96]

82. This hypothesis, however, is not introduced for its own sake, but
only to usher in the Helmholtzian deus ex machina, Mechanics. For
Mechanics proves—so Erdmann confidently continues—that rigidity must
hold, not merely as to ratios, in the above restricted geometrical sense, but
as to absolute magnitudes (p. 62). Hence we get at last true Congruence,
empirical as Mechanics is empirical, and impossible to prove apart from
Mechanics. I have already criticized Helmholtz's view of the dependence
of Geometry on Mechanics, and need not here speak of it at length. It is a
pity that Erdmann has in no way specified the procedure by which



Mechanics decides the geometrical alternatives—indeed he seems to rely
on the ipse dixit of Helmholtz. How, if Geometry would be totally unable
to discover a change in dimensions of the kind suggested, the Laws of
Motion, which throughout depend on Geometry, should be able to discover
it if it existed, I am wholly at a loss to understand. Uniform motion in a
straight line, for example, presupposes geometrical measurement; if this
measurement is mistaken, what Mechanics imagines to be uniform motion
is not really such, but Mechanics can never discover the discrepancy. If the
Laws of Motion had been regarded as à priori, Geometry might possibly
have been reinforced by them; but so long as they are empirical, they
presuppose geometrical measurement, and cannot therefore condition or
affect it.

Erdmann's conclusion, in the second chapter, is that Congruence is
probable, but cannot be verified in the infinitesimal; that its truth involves
the actual existence of rigid bodies (though, by the way, we know these to
be, strictly speaking, non-existent), that rigid bodies are freely moveable,
and do not alter their size in rotation (Helmholtz's Monodromy); that the
axiom of three dimensions is certain, since small errors are impossible;
and that the remaining axioms of Euclid—those of the straight line and of
parallels—are approximately, if not accurately, true of our actual space
(pp. 78, 83). He does not discuss how Congruence, on the above view, is
compatible with the atomic theory, or even with the observed deformations
of approximately rigid bodies; nor how, if space, as he assumes, is
homogeneous, rigid bodies can fail to be freely moveable through space.
The axioms are all lumped together as empirical, and it appears, in the
following chapters, that Erdmann regards their empirical nature as
sufficiently proved by their applicability to empirical material (cf. pp.
159, 165)—a strange criterion, which would prove the same conclusion,
with equal facility, of Arithmetic and of the laws of thought.

83. The third chapter, on the philosophical consequences of
Metageometry, need not be discussed at length, since it deals rather with
space than with Geometry. At the same time, it will be worth while to treat
briefly of Erdmann's criterion of apriority. On this subject it is very
difficult to discover his meaning, since it seems to vary with the topic he
is discussing. Thus at one time (p. 147) he rejects most emphatically the
Kantian connection of the à priori and the subjective[97], and yet at



another time (p. 96) he regards every presentation of external things as
partly à priori, partly empirical, merely because such a presentation is due
to an interaction between ourselves and things, and is therefore partly due
to subjective activity, partly due to outside objects. Hence, he says, the
distinction is not between different presentations, but between different
aspects of one and the same presentation. This seems to return wholly to
the Kantian psychological criterion of subjectivity, with the added
disadvantage that it makes the distinction, like that of analytic and
synthetic, epistemologically worthless. And yet he never hesitates to
pronounce every piece of knowledge in turn empirical. The fact seems to
be, that where he wants a more logical criterion, he adopts a modification
of Helmholtz's criterion for sensations. If space be an à priori form, he
says, no experience could possibly change it (p. 108); but this
Metageometry has proved not to be the case, since we can intuit the
perceptions which non-Euclidean space would give us (p. 115). I have
criticised this argument in discussing Helmholtz; at present we are
concerned with Erdmann's criterion of apriority. The subjectivity-criterion
—though he certainly uses it in discussing the apriority of space, and
solemnly decides, by its means, that space is both à priori and empirical
since a change either in us or in the outer world could change it (p. 97)—
would seem, like several of his other tests, to be a lapse on his part: the
criterion which he means to use is Helmholtz's. This criterion, I think,
with a slight change of wording, might be accepted; it seems to me a
necessary, but not a sufficient condition. The à priori, we may say, is not
only that which no experience can change, but that without which
experience would become impossible. It is the omission to discuss the
conditions which render geometrical (and mechanical) experience
possible, to my mind, which vitiates the empirical conclusions of
Helmholtz and Erdmann. Why certain conditions should be necessary for
experience—whether on account of the constitution of the mind, or for
some other reason—is a further question, which introduces the relation of
the à priori to the subjective. But in discussing the question as to what
knowledge is à priori, as opposed to the question concerning the further
consequences of apriority, it is well to keep to the purely logical criterion,
and so preserve our independence of psychological controversies. The fact,
if it be a fact, that the world might be such as to defy our attempts to know
it, will not, with the above criterion, invalidate the conclusion that certain



elements in knowledge are à priori; for whether fulfilled or not, they
remain necessary conditions for the existence of any knowledge at all.

84. With this caution as to the meaning of apriority, we shall find, I
think, that the conclusions of Erdmann's final chapter, on the principles of
a theory of Geometry, are largely invalidated by the diversity and
inadequacy of his tests of the à priori. He begins by asserting, in
conformity with the quantitative bias noticed above, that the question as to
the nature of geometrical axioms is completely analogous to the
corresponding question of the foundations of pure mathematics (p. 138).
This is, I think, a radical error: for the function of the axioms seems to be,
to establish that qualitative basis on which, as we saw, all qualitative
comparison must rest. But in pure mathematics, this qualitative basis is
irrelevant, for we deal there with pure quantity, i.e. with the merely
quantitative result of quantitative comparison, wherever it is possible,
independently of the qualities underlying the comparison. Geometry, as
Grassmann insists[98], ought not to be classed with pure mathematics, for
it deals with a matter which is given to the intellect, not created by it. The
axioms give the means by which this matter is made amenable to quantity,
and cannot, therefore, be themselves deduced from purely quantitative
considerations.

Leaving this point aside, however, let us return to Erdmann. He
distinguishes, within space, a form and a matter: the form is to contain the
properties common to all extents, the matter the properties which
distinguish space from other extents. This distinction, he says, is purely
logical, and does not correspond with Kant's: matter and form, for
Erdmann, are alike empirical. The axioms and definitions of Geometry, he
says, deal exclusively with the matter of space. It seems a pity, having
made this distinction, to put it to so little use: after a few pages, it is
dropped, and no epistemological consequences are drawn from it. The
reason is, I think, that Erdmann has not perceived how much can be
deduced from his definition of an extent, as a manifold in which the
dimensions are homogeneous and interchangeable. For this property
suffices to prove the complete homogeneity of an extent, and hence—from
the absence of qualitative differences among elements—the relativity of
position and the axiom of Congruence. This deduction will be made at
length in the sequel[99]; at present, I have only to observe that every



extent, on this view, possesses all the properties (except the three
dimensions) common to Euclidean and non-Euclidean spaces. The axioms
which express these properties, therefore, apply to the form of space, and
follow from homogeneity alone, which Erdmann allows (p. 171) as the
principle of any theory of space. The above distinction of form and matter,
therefore, corresponds, when its full consequences are deduced, to the
distinction between the axioms which follow from the homogeneity of
space and those which do not. Since, then, homogeneity is equivalent to
the relativity of position, and the relativity of position is of the very
essence of a form of externality, it would seem that his distinction of form
and matter can also be made coextensive with the distinction of the à
priori and empirical in Geometry. On this subject, I shall have more to say
in Chapter III.

In the remainder of the chapter, Erdmann insists that the straight line,
etc., though not abstracted from experience, which nowhere presents
straight lines, must yet, as applicable to admittedly empirical sciences, be
empirical (p. 159)—a criterion which he appears to employ only when all
other grounds for an empirical opinion fail, and one which, obviously, can
never refuse to do its work, since all elements of knowledge are
susceptible of employment on some empirical material. He also defines
the straight line (p. 155) as a line of constant curvature zero, as though
curvature could be measured independently of the straight line. Even the
arithmetical axioms are declared empirical (p. 165), since in a world
where things were all hopelessly different from one another, these axioms
could not be applied. After this reminder of Mill, we are not surprised, a
few pages later (p. 172), at a vague appeal to "English logicians" as having
proved Geometry to be an inductive science. Nevertheless, Erdmann
declares, almost on the last page of his book (p. 173), that Geometry is
distinguished from all other sciences by the homogeneity of its material: a
principle of which no single application occurs throughout his book, and
which, as we shall see in Chapter III., flatly contradicts the philosophical
theories advocated throughout his preceding pages.

On the whole, then, it cannot be said that Erdmann has done much to
strengthen the philosophical position of Riemann and Helmholtz. I have
criticized him at length, because his book has the appearance of great
thoroughness, and because it is undoubtedly the best defence extant of the



position which it takes up. We shall now have the opposite task to perform,
in defending Metageometry, on its mathematical side, from the attacks of
Lotze and others, and in vindicating for it that measure of philosophical
importance—far inferior, indeed, to the hopes of Erdmann—which it
seems really to possess.



Lotze.

85. Lotze's argument as regards Geometry[100]—which follows a
metaphysical argument as to the ontological nature of space, and assumes
the results of this argument—consists of two parts: the first discusses the
various meanings logically assignable (pp. 233–247) to the proposition
that other spaces than Euclid's are possible, and the second criticizes, in
detail, the procedure of Metageometry. The first of these questions is very
important, and demands considerable care as to the logical import of a
judgment of possibility. Although Lotze's discussion is excellent in many
respects, I cannot persuade myself that he has hit on the only true sense in
which non-Euclidean spaces are possible. I shall endeavour to make good
this statement in the following pages.

86. Lotze opens with a somewhat startling statement, which, though
philosophically worthy to be true, does not appear to be historically borne
out. Euclidean Geometry has been chiefly shaken, he says, by the Kantian
notion of the exclusive subjectivity of space—if space is only our private
form of intuition, to which there exists no analogue in the objective world,
then other beings may have other spaces, without supposing any difference
in the world which they arrange in these spaces (p. 233). This certainly
seems a legitimate deduction from the subjectivity of space, which, so far
from establishing the universal validity of Euclid, establishes his validity
only after an empirical investigation of the nature of space as intuited by
Tom, Dick or Harry. But as a matter of fact, those who have done most to
further non-Euclidean Geometry—with the exception of Riemann, who
was a disciple of Herbart—have usually inherited from Newton a naïve
realism as regards absolute space. I might instance the passage quoted
from Bolyai in Chapter I., or Clifford, who seems to have thought that we
actually see the images of things on the retina[101], or again Helmholtz's
belief in the dependence of Geometry on the behaviour of rigid bodies.
This belief led to the view that Geometry, like Physics, is an experimental
science, in which objective truth can be attained, it is true, but only by
empirical methods. However, Lotze's ground for uncertainty about Euclid
is a philosophically tenable ground, and it will be instructive to observe
the various possibilities which arise from it.



If space is only a subjective form—so Lotze opens his argument—other
beings may have a different form. If this corresponds to a different world,
the difference, he says, is uninteresting: for our world alone is relevant to
any metaphysical discussion. But if this different space corresponds to the
same world which we know under the Euclidean form, then, in his opinion,
we get a question of genuine philosophic interest. And here he
distinguishes two cases: either the relations between things, which are
presented to these hypothetical beings under the form of some different
space, are relations which do not appear to us, or at any rate do not appear
spatial; or they are the same relations which appear to us as figures in
Euclidean space (p. 235). The first possibility would be illustrated, he
says, by beings to whom the tone or colour-manifolds appeared extended;
but we cannot, in his opinion, imagine a manifold, such as is required for
this case, to have its dimensions homogeneous and comparable inter se,
and therefore the contents of the various presentations constituting such a
manifold could not be combined into a single content containing them all.
But the possibility of such a combination is of the essence of anything
worth calling a space: therefore the first of the above possibilities is
unmotived and uninteresting. Lotze's conclusion on this point, I think, is
undeniable, but I doubt whether his argument is very cogent. However, as
this possibility has no connection with that contemplated by non-
Euclideans, it is not worth while to discuss it further.

The second possibility also, Lotze thinks, is not that of Metageometry,
but in truth it comes nearer to it than any of the other possibilities
discussed. If a non-Euclidean were at the same time a believer in the
subjectivity of space, he would have to be an adherent of this view. Let us
see more precisely what the view is. In Book II., Chapter I., Lotze has
accepted the argument of the Transcendental Aesthetic, but rejected that of
the mathematical antinomies: he has decided that space is, as Kant
believed, subjective, but possesses nevertheless, what Kant denied it, an
objective counterpart. The relation of presented space to its objective
counterpart, as conceived by Lotze, is rather hard to understand. It seems
scarcely to resemble the relation of sensation to its object—e.g. of light to
ether-vibrations—for if it did, space would not be in any peculiar sense
subjective. It seems rather to resemble the relation of a perceived bodily
motion to the state of mind of the person willing the motion. However this
may be, the objective counterpart of space is supposed to consist of certain



immediate interactions of monads, who experience the interactions as
modifications of their internal states. Such interactions, it is plain, do not
form the subject-matter of Geometry, which deals only with our resulting
perceptions of spatial figures. Now if Lotze's construction of space be
correct, there seems certainly no reason why these resulting perceptions
should not, for one and the same interaction between monads, be very
different in beings differently constituted from ourselves. But if they were
different, says Lotze, they would have to be utterly different—as different,
for example, as the interval between two notes is from a straight line. The
possibility is, therefore, in his opinion, one about which we can know
nothing, and one which must remain always a mere empty idea. This
seems to me to go too far: for whatever the objective counterpart may be,
any argument which gives us information about it must, when reversed,
give us information about any possible form of intuition in which this
counterpart is presented. The argument which Lotze has used in his former
chapter, for example, deducing, from the relativity of position, the merely
relational nature of the objective counterpart, allows us, conversely, to
infer, from this relational nature, the complete relativity of position in any
possible space-intuition—unless, indeed, it bore a wholly deceitful
relation to those interactions of monads which form its objective
counterpart. But the complete relativity of position, as I shall endeavour to
establish in Chapter III., suffices to prove that our Geometry must be
Euclidean, elliptic, spherical or pseudo-spherical. We have, therefore, it
would seem, very considerable knowledge, on Lotze's theory of space, of
the manner in which what appears to us as space must appear to any beings
with our laws of thought. We cannot know, it is true, what psychological
theory of space-perception would apply to such beings: they might have a
sense different from any of ours, and they might have no sense in any way
resembling ours, but yet their Geometry would have points of resemblance
to ours, as that of the blind coincides with that of the seeing. If space has
any objective counterpart whatever, in short, and if any inference is
possible, as Lotze holds it to be, from space to its counterpart, then a
converse argument is also possible, though it may give some only of the
qualities of Euclidean space, since some only of these qualities may be
found to have a necessary analogue in the counterpart.

87. Admitting, then, in Lotze's sense, the subjectivity of space, the
above possibility does not seem so empty as he imagines. He discusses it



briefly, however, in order to pass on to what he regards as the real meaning
of Metageometry. In this he is guilty of a mathematical mistake, which
causes much irrelevant reasoning. For he believes that Metageometry
constructs its spaces out of straight lines and angles in all respects similar
to Euclid's, whence he derives an easy victory in proving that these
elements can lead only to the one space. In this he has been misled by the
phraseology of non-Euclideans, as well as by Euclid's separation of
definitions and axioms. For the fact is, of course, that straight lines are
only fully defined when we add to the formal definition the axioms of the
straight line and of parallels. Within Euclidean space, Euclid's definition
suffices to distinguish the straight line from all other curves; the two
axioms referred to are then absorbed into the definition of space. But apart
from the restriction to Euclidean space, the definition has to be
supplemented by the two axioms, in order to define completely the
Euclidean straight line. Thus Lotze has misconceived the bearing of non-
Euclidean constructions, and has simply missed the point in arguing as he
does. The possibility contemplated by a non-Euclidean, if it fell under any
of Lotze's cases, would fall under the second case discussed above.

88. But the bearing of Metageometry is really, I think, different from
anything imagined by Lotze; and as few writers seem clear on this point, I
will enter somewhat fully into what I conceive to be its purpose.

In the first place, there are some writers—notably Clifford—who, being
naïve realists as regards space, hold that our evidence is wholly
insufficient, as yet, to decide as to its nature in the infinite or in the
infinitesimal (cf. Essays, Vol. I. p. 320): these writers are not concerned
with any possibility of beings different from ourselves, but simply with
the everyday space we know, which they investigate in the spirit of a
chemist discussing whether hydrogen is a metal, or an astronomer
discussing the nebular hypothesis.

But these are a minority: most, more cautious, admit that our space, so
far as observation extends, is Euclidean, and if not accurately Euclidean,
must be only slightly spherical or pseudo-spherical. Here again, it is the
space of daily life which is under discussion, and here further the
discussion is, I think, independent of any philosophical assumption as to
the nature of our space-intuition. For even if this be purely subjective, the
translation of an intuition into a conception can only be accomplished



approximately, within the errors of observation incident to self-analysis;
and until the intuition of space has become a conception, we get no
scientific Geometry. The apodeictic certainty of the axiom of parallels
shrinks to an unmotived subjective conviction, and vanishes altogether in
those who entertain non-Euclidean doubts. To reinforce the Euclidean
faith, reason must now be brought to the aid of intuition; but reason,
unfortunately, abandons us, and we are left to the mercy of approximate
observations of stellar triangles—a meagre support, indeed, for the
cherished religion of our childhood.

89. But the possibility of an inaccuracy so slight, that our finest
instruments and our most distant parallaxes show no trace of it, would
trouble men's minds no more than the analogous chance of inaccuracy in
the law of gravitation, were it not for the philosophical import of even the
slenderest possibility in this sphere. And it is the philosophical bearing of
Metageometry alone, I think, which constitutes its real importance. Even
if, as we will suppose for the moment, observation had established, beyond
the possibility of doubt, that our space might be safely regarded as
Euclidean, still Metageometry would have shown a philosophical
possibility, and on this ground alone it could claim, I think, very nearly all
the attention which it at present deserves.

But what is this possibility? A thing is possible, according to Bradley
(Logic, p. 187), when it would follow from a certain number of conditions,
some of which are known to be realized. Now the conditions to which a
form of externality must conform, in order to be affirmed, are: first, of
course, that it should be experienced, or legitimately inferred from
something experienced; but secondly, that it should conform to certain
logical conditions, detailed in Chapter III., which may be summed up in the
relativity of position. Now what Metageometry has done, in any case, is to
suggest the proof that the second of these conditions is fulfilled by non-
Euclidean spaces. Euclid is affirmed, therefore, on the ground of
immediate experience alone, and his truth, as unmediated by logical
necessity, is merely assertorical, or, if we prefer it, empirical. This is the
most important sense, it seems to me, in which non-Euclidean spaces are
possible. They are, in short, a step in a philosophical argument, rather than
in the investigation of fact: they throw light on the nature of the grounds
for Euclid, rather than on the actual conformation of space[102]. This



import of Metageometry is denied by Lotze, on the ground that non-
Euclidean logic is faulty, a ground which he endeavours, by much detail
and through many pages, to make good—with what success, we will now
proceed to examine.

90. Lotze's attack on Metageometry—although it remains, so far as I
know, the best hostile criticism extant, and although its arguments have
become part of the regular stock-in-trade of Euclidean philosophers—
contains, if I am not mistaken, several misunderstandings due to
insufficient mathematical knowledge of the subject. As these
misunderstandings have been widely spread among philosophers, and
cannot be easily removed except by a critic who has gone into non-
Euclidean Geometry with some care, it seems desirable to discuss Lotze's
strictures point by point.

91. The mathematical criticism begins (§ 131) with a somewhat
question-begging definition of parallel straight lines. Two straight lines
aα, bβ, according to this definition, are parallel when—a and b being
arbitrary points on the two lines—if aα = bβ, then ab = αβ, where α, β are
two other points on the two straight lines respectively. This definition—
which contains Euclid's axiom and definition combined in a very
convenient and enticing form—is of course thoroughly suitable to
Euclidean Geometry, and leads immediately to all the Euclidean
propositions about parallels. But it is perhaps more honest to follow
Euclid's course; when an axiom is thus buried in a definition, it is apt to
seem, since definitions are supposed to be arbitrary, as though the
difficulty had been overcome, while in reality, the possibility of parallels,
as above defined, involves the very point in question, namely, the disputed



axiom of parallels. For what this axiom asserts is simply the existence of
lines conforming to Lotze's definition. The deduction of the principal
propositions on parallels, with which Lotze follows up his definition, is of
course a very simple proceeding—a proceeding, however, in which the
first step begs the question.

92. The next argument for the apriority of Euclidean Geometry has,
oddly enough, an exactly opposite bearing, although it is a great favourite
with opponents of Metageometry. Measurements of stellar triangles, and
all similar attempts at an empirical determination of the space-constant
are, according to Lotze, beside the mark; for any observed departure from
two right angles, or any finite annual parallax for distant stars, would be
attributed to some new kind of refraction, or, as in the case of aberration,
to some other physical cause, and never to the geometrical nature of space.
This is a strong argument for the empirical validity of Euclid, but as an
argument for the apodeictic certainty of the orthodox system, it has an
opposite tendency. For observations of the kind contemplated would have
to be due to departures from Euclidean straightness, hitherto unknown, on
the part of stellar light-rays. Such departure could, in certain cases, be
accounted for by a finite space-constant, but it could also, probably, be
accounted for by a change in Optics, for example, by attributing refractive
properties to the ether. Such properties could only exist if ether were of
varying density, if (say) it were denser in the neighbourhood of any of the
heavenly bodies. But such an assumption would, I believe, destroy the
utility of ether for Physics; a slight alteration in our Geometry, so slight as
not appreciably to affect distances within the Solar System, would
probably be in the end, therefore, should such errors ever be discovered, a
simpler explanation than any that Physics could offer. But this is not the
point of my contention. The point is that, if the physical explanation, as
Lotze holds, be possible in the above case, the converse must also hold: it
must be possible to explain the present phenomena by supposing ether
refractive and space non-Euclidean. From this conclusion there is no
escape. If every conceivable behaviour of light-rays can be explained,
within Euclid, by physical causes, it must also be possible, by a suitable
choice of hypothetical physical causes, to explain the actual phenomena as
belonging to a non-Euclidean space. Such a hypothesis would be rightly
rejected by Science, for the present, on account of its unnecessary
complexity. Nevertheless it would remain, for philosophy, a possibility to



be reckoned with, and the choice could only be decided upon empirical
grounds of simplicity. It may well be doubted whether, in the world we
know, the phenomena could be attributed to a distinctly non-Euclidean
space, but this conclusion follows inevitably from the contention that no
phenomena could force us to assume such a space. Lotze's argument,
therefore, if pushed home, disproves his own view, and puts Euclidean
space, as an empirical explanation of phenomena, on a level with
luminiferous ether[103].

93. Lotze now proceeds (§ 132) to a detailed criticism of Helmholtz,
whom he regards as a typical exponent of Metageometry. It is possible
that, at the time when he wrote, Helmholtz really did occupy this position;
but it is unfortunate that, in the minds of philosophers, he should still
continue to do so, after the very material advances brought about by the
projective treatment of the subject. It is also unfortunate that his
somewhat careless attempts to popularise mathematical results have so
often been disposed of, without due attention to his more technical and
solid contributions. Thus his romances about Flatland and Sphereland—at
best only fairy-tale analogies of doubtful value—have been attacked as if
they formed an essential feature of Metageometry.

But to proceed to particulars: Lotze readily allows that the Flatlanders
would set up Plane Geometry, as we know it, but refuses to admit that the
Spherelanders could, without inferring the third dimension, set up a two-
dimensional spherical Geometry which should be free from contradictions.
I will endeavour to give a free rendering of Lotze's argument on this point.

Suppose, he says, a north and south pole, N and S,
arbitrarily fixed, and an equator EW. Suppose a being,
B, capable of impressions only from things on the
surface of the sphere, to move in a meridian NBS. Let B
start from some point a, and finally, after describing a
great circle, return to the same point a. If a is known
only by the quality of the impression it makes on B, B
may imagine he has not reached the same point a, but another similar
point a′, bearing a relation to a similar to that of the octave in singing: he
might even not arrange his impressions spatially at all. In order that this
may occur, we require the further assumption, that every difference in the
above-mentioned feelings (as he describes the meridian) may be presented



as a spatial distance between two places. Even now, B may think he is
describing a Euclidean straight line, containing similar points at certain
intervals. Allowing, however, that he realizes the identity of a with his
initial position, he will now seem, by motion in a straight line, to have
returned to the point from which he started, for his motion cannot, without
the third dimension, seem to him other than rectilinear.

Up to this point, there seems little ground for objection, except, perhaps,
to the idea of a straight line with periodical similar points—if B were as
philosophical as, in these discussions, we usually suppose him to be, he
would probably object to this interpretation of his experiences, on the
ground that it regards empty space as something independent of the
objects in it. It is worth pointing out, also, that B would not need to
describe the whole circle, in order suddenly to find himself home again
with his old friends. Accurate measurements of small triangles would
suffice to determine his space-constant, and show him the length of a great
circle (or straight line, as he would call it). We must admit, also, that so
hypothetical a being as B might form no space-intuition at all, but as he is
introduced solely for the purposes of the analogy, it is convenient to allow
him all possible qualifications for his post. But these points do not touch
the kernel of the argument, which lies in the statement that such a straight
line, returning into itself after a finite time, would appear to B as an
"unendurable contradiction," and thus force him, for logical though not for
sensational purposes, into the assumption of a third dimension. This
assertion seems to me quite unwarranted: the whole of Metageometry is a
solid array in disproof of it. Helmholtz's argument is, it must be
remembered, only an analogy, and the contradiction would exist only for a
Euclidean. A complete three-dimensional Geometry has, we have seen in
Chapter I., been developed on the assumption that straight lines are of
finite length. A constant value for the measure of curvature, as our
discussion of Riemann showed, involves neither reference to the fourth
dimension, nor any kind of internal contradiction. This fact disproves
Lotze's contention, which arises solely from inability to divest his
imagination of Euclidean ideas.

Lotze next attacks Helmholtz for the assertion that B would know
nothing of parallel lines—parallel straight lines, as the context shows, he
meant to say[104]. Lotze, however, takes him as meaning, apparently, mere



curves of constant distance from a given straight line, which are part of the
regular stock-in-trade of Metageometry. Parallels of latitude, in the
geographical sense, would not—with the exception of the equator—appear
to B as straight lines, but as circles. Great circles he would call straight,
and this fact seems to have misled Lotze into thinking all circles were to
be treated as straight lines. Parallels of latitude, therefore, though B might
call them parallels, would not invalidate Helmholtz's contention, which
applies only to straight lines.

The argument that such small circles would be parallel, which we have
just disposed of, is only the preface to another proof that B would need a
third dimension. Let us call two of these parallels of latitude ln and ls, and
let them be equidistant from the equator, one in the northern, one in the
southern hemisphere. Consecutive tangent planes, along these parallels,
converge, in the one case northwards, in the other southwards. Either B
could become aware of their difference, says Lotze, or he could not. In the
former case, which he regards as the more probable, he easily proves that
B would infer a third dimension. But this alternative is, I think, wholly
inadmissible. Tangent planes, like Euclidean planes in general, would have
no meaning to B; unless, indeed, he were a metageometrician, which, with
all his metaphysical and mathematical subtlety, the argument supposes
him not to be—and to such a supposition Lotze, surely, is the last person
who has a right to object. Lotze's attempted proof that this is the right
alternative rests, if I understand him aright, on a sheer error in ordinary
spherical Geometry. B would observe, he says, that the meridians made
smaller angles with his path towards the nearer than towards the further
pole—as a matter of fact, they would be simply perpendicular to his path
in both directions. What Lotze means is, perhaps, that all the meridians
would meet sooner in one direction than in the other, and this, of course, is
true. But the poles, in which the meridians meet, would appear to B as the
centres of the respective parallels, while the parallels themselves would
appear to be circles. Now I am at a loss to see what difficulty would arise,
to B, in supposing two different circles to have different centres[105]. We
must, therefore, take the first alternative, that B would have no sort of
knowledge as to the direction in which the tangent planes converged. Here
Lotze attempts, if I have not misunderstood him, to prove a reductio ad
absurdum: B would think, he says, that he was describing two paths wholly



the same in direction, and then he might regard both paths as circles in a
plane. It may be observed that direction, when applied to a circle as a
whole, is meaningless; indeed direction, in all Metageometry, can only
mean, even when applied to straight lines, direction towards a point. To
speak of two lines, which do not meet, as having the same direction, is a
surreptitious introduction of the axiom of parallels. Apart from this, I
cannot conceive any objection, on B's part, to such a view—one should say
must, not might. The whole argumentation, therefore, unless its obscurity
has led me astray, must be pronounced fruitless and inconclusive.

94. After this preliminary discussion of Sphereland, Lotze proceeds to
the question of a fourth dimension, and thence to spherical and pseudo-
spherical space. As before, he appears to know only the more careless and
popular utterances of Helmholtz and Riemann, and to have taken no
trouble to understand even the foundations of mathematical
Metageometry. By this neglect, much of what he says is rendered wholly
worthless. To begin with, he regards, as the purpose of Helmholtz's fairy
tale, the suggestion of a possible fourth dimension, whereas the real
purpose was quite the opposite—to make intelligible a purely three-
dimensional non-Euclidean space. Helmholtz introduced Flatland only
because its relation to Sphereland is analogous to the relation of ours to
spherical space[106]. But Lotze says: The Flatlanders would find no
difficulty in a third dimension, since it would in no way contradict their
own Geometry, while the people in Sphereland, from the contradictions in
their two-dimensional system, would already have been led to it. The latter
contention I have already tried to answer; the former has an odd sound, in
view of the attempt, a few pages later, to prove à priori that all forms of
intuition, in any way analogous to space, must have three dimensions. One
cannot help suspecting that the Flatlanders, with two instead of three
dimensions, would make a similar attempt. But to return to Lotze's
argument: Neither analogy can be used, he says, to prove that we ought
perhaps to set up a fourth dimension, since, for us, no contradictions or
otherwise inexplicable phenomena exist. The only people, so far as I know,
who have used this analogy, are Dr Abbot and a few Spiritualists—the
former in joke, the latter to explain certain phenomena more simply
explained, perhaps, by Maskelyne and Cooke. But although Lotze's
conclusion in this matter is sound, and one with which Helmholtz might



have agreed, his arguments, to my mind, are irrelevant and unconvincing.
There is this difference, he says, between us and the Spherelanders: the
latter were logically forced to a new dimension, and found it possible; we
are not forced to it, and find it, in our space, impossible. I have contended
that, on the contrary, nothing would force the Spherelanders to assume a
third dimension, while they would find it impossible exactly as we find a
fourth impossible—not logically, that is to say, but only as a presentable
construction in given space.

After a somewhat elephantine piece of humour, about socialistic whales
in a four-dimensional sea of Fourrier's eau sucrée, Lotze proceeds to a
proof, by logic, that every form of intuition, which embraces the whole
system of ordered relations of a coexisting manifold, must have three
dimensions. One might object, on à priori grounds, to any such attempt:
what belongs to pure intuition could hardly, one would have thought, be
determined by à priori reasoning[107]. I will not, however, develop this
argument here, but endeavour to point out, as far as its obscurity will
allow, the particular fallacy of the proof in question.

Lotze's argument is as follows. In this discussion, though our
terminology is necessarily taken from space, we are really concerned with
a much more general conception. We assume, in order to preserve the
homogeneity of dimensions, that the difference (distance) between any
two elements (points) of our manifold—to borrow Riemann's word—is of
the same kind as, and commensurable with, the difference between any
other two elements. Let us take a series of elements at successive



distances x such that the distance between any two is the sum of the
distances between intermediate elements. Such a series corresponds to a
straight line, which is taken as the x-axis. Then a series OY is called
perpendicular to the x-axis OX, when the distances of any element y, on
OY, from +mx and -mx are equal. By our hypothesis, these distances are
comparable with, and qualitatively similar to, x and y. So long as OY is
defined only by relation to OX, it is conceptually unique. But now let us
suppose the same relation as that between OX and OY, to be possible
between OY and a new series OZ; we then get a third series OZ
perpendicular to OY, and again conceptually unique, so long as it is
defined by relation to OY alone. We might proceed, in the same way, to a
fourth line OU perpendicular to OZ. But it is necessary, for our purposes,
that OZ should be perpendicular to OX as well as OY. Without this
condition, OZ might extend into another world, and have no corresponding
relation to OX—this is a possibility only excluded by our unavoidable
spatial images. At this point comes the crux of the argument. That OZ,
says Lotze, which, besides being perpendicular to OY, is also
perpendicular to OX, must be among the series of OY's, for these were
defined only by perpendicularity to OX. Hence, he concludes, there can
only be even a third dimension if OZ coincides with one, and—as soon as
OX is considered fixed—with only one, of the many members of the OY
series.

In this argument it is difficult—to me at any rate—to see any force at
all. The only way I can account for it is, to suppose that Lotze has
neglected the possibility of any but single infinities. On this interpretation,
the argument might be stated thus: There is an infinite series of
continuously varying OY's; to the common property of these, we add
another property, which will divide their total number by infinity. The
remaining OZ, therefore, must be uniquely determined. The same form of
argument, however, would prove that two surfaces can only cut one
another in a single point, and numberless other absurdities. The fact is,
that infinities may be of different orders. For example, the number of
points in a line may be taken as a single infinity, and so may the number of
lines in a plane through any point; hence, by multiplication, the number of
points in a plane is a double infinity, ∞2, and if we divide this number by a
single infinity, we get still an infinite number left. Thus Lotze's argument
assumes what he has to prove, that the number of lines perpendicular to a



given line, through any point, is a single infinity, which is equivalent to the
axiom of three dimensions. The whole passage is so obscure, that its
meaning may have escaped me. It is obvious à priori, however, as I
pointed out in the beginning, that any proof of the axiom must be
fallacious somewhere, and the above interpretation of the argument is the
only one I have been able to find.

95. The rest of the Chapter is devoted to an attack on spherical and
pseudo-spherical space, on the ground that they interfere with the
homogeneity of the three dimensions, and with the similarity of all parts
of space. This is simply false. Such spaces, like the surface of a sphere,
are exactly alike throughout. Lotze shows, here and elsewhere, that he has
not taken the pains to find out what Metageometry really is. I hold myself,
and have tried to prove in this Essay, that Congruence is an à priori axiom,
without which Geometry would be impossible; but the wish to uphold this
axiom is, as Lotze ought to have known, the precise motive which led
Metageometry to limit itself to spaces of constant measure of curvature.
We see here the importance of distinguishing between Helmholtz the
philosopher and Helmholtz the mathematician. Though the philosopher
wished to dispense with Congruence, the mathematician, as we saw in
Chapter I., retained and strongly emphasized it. A little later Lotze shows,
again, how he has been misled by the unfortunate analogy of Sphereland.
A spherical surface, he says, he can understand; but how are we to pass
from this to a spherical space? Either this surface is the whole of our
space, as in Sphereland, or it generates space by a gradually growing
radius. Such concentric spheres, as Lotze triumphantly points out, of
course generate Euclidean space. His disjunction, however, is utterly and
entirely false, and could never have been suggested by any one with even a
superficial knowledge of Metageometry. This point is less laboured than
the former, which, in all its nakedness, is thus re-stated in the last sentence
of the Chapter: "I cannot persuade myself that one could, without the
elements of homogeneous space, even form or define the presentation of
heterogeneous spaces, or of such as had variable measures of curvature."
As though such spaces were ever set up by non-Euclidean mathematics!

In conclusion, Lotze expresses a hope that Philosophy, on this point,
will not allow itself to be imposed upon by Mathematics. I must, instead,
rejoice that Mathematics has not been imposed upon by Philosophy, but



has developed freely an important and self-consistent system, which
deserves, for its subtle analysis into logical and factual elements, the
gratitude of all who seek for a philosophy of space.

96. The objections to non-Euclidean Geometry which have just been
discussed fall under four heads:

I. Non-Euclidean spaces are not homogeneous; Metageometry therefore
unduly reifies space.

II. They involve a reference to a fourth dimension.

III. They cannot be set up without an implicit reference to Euclidean
space, or to the Euclidean straight line, on which they are therefore
dependent.

IV. They are self-contradictory in one or more ways.

The reader who has followed me in regarding these four objections as
fallacious, will have no difficulty in disposing of any other critic of
Metageometry, as these are the only mathematical arguments, so far as I
know, ever urged against non-Euclideans[108]. The logical validity of
Metageometry, and the mathematical possibility of three-dimensional non-
Euclidean spaces, will therefore be regarded, throughout the remainder of
the work, as sufficiently established.

97. Two other objections may, indeed, be urged against Metageometry,
but these are rather of a philosophical than of a strictly mathematical
import. The first of these, which has been made the base of operations by
Delbœuf, applies equally to all non-Euclidean spaces. The second, which
has not, so far as I know, been much employed, but yet seems to me
deserving of notice, bears directly against spaces of positive curvature
alone; but if it could discredit these, it might throw doubt on the method
by which all alike are obtained. The two objections are:

I. Space must be such as to allow of similarity, i.e. of the increase or
diminution, in a constant ratio, of all the lines in a figure, without change
of angles; whereas in non-Euclid, lines, like angles, have absolute
magnitude.

II. Space must be infinite, whereas spherical and elliptic spaces are
finite.



I will discuss the first objection in connection with Delbœuf's articles
referred to above. The second, which has not, to my knowledge, been
widely used in criticism, will be better deferred to Chapter III.



Delbœuf.

98. M. Delbœuf's four articles in the Revue Philosophique contain much
matter that has already been dealt with in the criticism of Lotze, and much
that is irrelevant for our present purpose. The only point, which I wish to
discuss here, is the question of absolute magnitude, as it is called—the
question, that is, whether the possibility of similar but unequal
geometrical figures can be known à priori[109].

In discussing this question, it is important, to begin with, to distinguish
clearly the sense in which absolute magnitude is required in non-Euclidean
Geometry, from another sense, in which it would be absurd to regard any
magnitude as absolute. Judgments of magnitude can only result from
comparison, and if Metageometry required magnitudes which could be
determined without comparison, it would certainly deserve condemnation.
But this is not required. All we require is, that it shall be impossible, while
the rest of space is unaffected, to alter the magnitude of any figure, as
compared with other figures, while leaving the relative internal
magnitudes of its parts unchanged. This construction, which is possible in
Euclid, is impossible in Metageometry. We have to discuss whether such
an impossibility renders non-Euclidean spaces logically faulty.

M. Delbœuf's position on this axiom—which he calls the postulate of
homogeneity[110]—is, that all Geometry must presuppose it, and that
Metageometry, consequently, though logically sound, is logically
subsequent to Euclid, and can only make its constructions within a
Euclidean "homogeneous" space (Rev. Phil. Vol. XXXVII., pp. 380–1). He
would appear to think, nevertheless, that homogeneity (in his sense) is
learnt from experience, though on this point he is not very explicit. (See
Vol. XXXVIII., p. 129.) No à priori proof, at any rate, is offered in his
articles. As a result of experience, every one would admit, similarity is
known to be possible within the limits of observation; but the fact that this
possibility extends to Ordnance maps, which deal with a spherical surface,
should make us chary of inferring, from such a datum, the certainty of
Euclid for large spaces. Moreover if homogeneity be empirical,
Metageometry, which dispenses with it, is not necessarily in logical
dependence upon Euclid, since homogeneity and isogeneity are logically



separable. I shall assume, therefore, as the only contention which can be
interesting to our argument, that homogeneity is regarded as à priori, and
as logically essential to Geometry.

99. Now we saw, in discussing Erdmann's views of the judgment of
quantity, that in non-Euclidean space, as in Euclidean, a change of all
spatial magnitudes, in the same ratio, would be no change at all; the ratios
of all magnitudes to the space-constant would be unchanged, and the
space-constant, as the ultimate standard of comparison, cannot, in any
intelligible sense, be said to have any particular magnitude. The absolute
magnitudes of Metageometry, therefore, are absolute only as against any
other particular magnitude, not as against other magnitudes in general. If
this were not the case, the comparative nature of the judgment of
magnitude would be contradicted, and metrical Metageometry would
become absurd. But as it is, the difference from Euclid consists only in
this: that in Metageometry we have, while in Euclid we have not, a
standard of comparison involved in the nature of our space as a whole,
which we call the space-constant. We have to discuss whether the assertion
of such a standard involves an undue reification of space.

I do not believe that this is the case. For an undue reification of space
would only arise, if we were no longer able to regard position as wholly
relative, and as geometrically definable only by departure from other
positions. But the relativity of position, as we have abundantly seen, is
preserved by all spaces of constant curvature—in all of these, positions
can only be defined, geometrically, by relations to fresh positions[111].
This series of definitions may lead to an infinite regress, but it may also,
as in spherical space, form a vicious circle, and return again to the position
from which it started. No reification of space, no independent existence of
mere relations, seems involved in such a procedure. The whole of
Metageometry, in short, is a proof that the relativity of position is
compatible with absolute magnitude, in the only sense required by non-
Euclidean spaces. We must conclude, therefore, that there is nothing
incompatible, in a denial of homogeneity (in Delbœuf's sense), either with
the relational nature of space, or with the comparative nature of
magnitude. This last à priori objection to Metageometry, therefore, cannot
be maintained, and the issue must be decided on empirical grounds alone.



100. The foundations of Geometry have been the subject of much recent
speculation in France, and this seems to demand some notice. But in spite
of the splendid work which the French have done on the allied question of
number and continuous quantity, I cannot persuade myself that they have
succeeded in greatly advancing the subject of geometrical philosophy. The
chief writers have been, from the mathematical side, Calinon and
Poincaré, from the philosophical, Renouvier and Delbœuf; as a mediator
between mathematics and philosophy, Lechalas.

Calinon, in an interesting article on the geometrical indeterminateness
of the universe, maintains that any Geometry may be applied to the actual
world by a suitable hypothesis as to the course of light-rays. For the earth
only is known to us otherwise than by Optics, and the earth is an
infinitesimal part of the universe. This line of argument has been already
discussed in connection with Lotze, but Calinon adds a new suggestion,
that the space-constant may perhaps vary with the time. This would
involve a causal connection between space and other things, which seems
hardly conceivable, and which, if regarded as possible, must surely destroy
Geometry, since Geometry depends throughout on the irrelevance of
Causation[112]. Moreover, in all operations of measurement, some time is
spent; unless we knew that space was unchanging throughout the
operation, it is hard to see how our results could be trustworthy, and how,
consequently, a change in the parameter could be discovered. The same
difficulties would arise, in fact, as those which result from supposing
space not homogeneous.

Poincaré maintains that the question, whether Euclid or Metageometry
should be accepted, is one of convenience and convention, not of truth;
axioms are definitions in disguise, and the choice between definitions is
arbitrary. This view has been discussed in Chapter I., in connection with
Cayley's theory of distance, on which it depends.

Lechalas is a philosophical disciple of Calinon. He is a rationalist of the
pre-Kantian type, but a believer in the validity of Metageometry. He holds
that Geometry can dispense with all purely spatial postulates, and work
with axioms of magnitude alone[113], which, in his opinion, are purely
analytic. The principle of contradiction, to him, is the sole and only test of
truth; we make long chains of reasoning from our premisses to see if



contradictions will emerge. It might be objected that this view, though it
saves general Geometry from being logically empirical, leaves it only
empirically logical; this must, in fact, be the fate of every piece of à priori
knowledge, if M. Lechalas's were the only test of truth. However, he
concludes that general Geometry is apodeictic, while the space of our
actual world, like all other phenomena, is contingent.

Delbœuf criticizes non-Euclidean space from an ultra-realist standpoint:
he holds that real space is neither homogeneous nor isogeneous, but that
conceived space, as abstracted from real space, has both these properties.
He offers no justification for his real space, which seems to be maintained
in the spirit of naïve realism, nor does he show how he has acquired his
intimate knowledge of its constitution[114]. His arguments against
Metageometry, in so far as they are not repetitions of Lotze, have been
discussed above.

Renouvier, finally, is a pure Kantian, of the most orthodox type. His
views as to the importance, for Geometry, of the distinction between
synthetic and analytic judgments, have been discussed, in connection with
Kant, at the beginning of the present Chapter[115].

101. Before beginning the constructive argument of the next Chapter, let
us endeavour briefly to sum up the theories which have been polemically
advocated throughout the criticisms we have just concluded. We agreed to
accept, with Kant, necessity for any possible experience as the test of the à
priori, but we refused, for the present, to discuss the connection of the à
priori with the subjective, regarding the purely logical test as sufficient
for our immediate purpose. We also refused to attach importance to the
distinction of analytic and synthetic, since it seemed to apply, not to
different judgments, but only to different aspects of any judgment.

We then discussed Riemann's attempt to identify the empirical element
in Geometry with the element not deducible from ideas of magnitude, and
we decided that this identification was due to a confusion as to the nature
of magnitude. For judgments of magnitude, we said, require always some
qualitative basis, which is not quantitatively expressible.

In criticizing Helmholtz, we decided that Mechanics logically
presupposes Geometry, though space presupposes matter; but that the
matter which space presupposes, and to which Geometry indirectly refers,



is a more abstract matter than that of Mechanics, a matter destitute of
force and of causal attributes, and possessed only of the purely spatial
attributes required for the possibility of spatial figures. But we conceded
that Geometry, when applied to mixed mathematics or to daily life,
demands more than this, demands, in fact, some means of discovering, in
the more concrete matter of Mechanics, either a rigid body, or a body
whose departure from rigidity follows some empirically discoverable law.
Actual measurement, therefore, we agreed to regard as empirical.

Our conclusions, as regards the empiricism of Riemann and Helmholtz,
were reinforced by a criticism of Erdmann. We then had an opposite task
to perform, in defending Metageometry against Lotze. Here we saw that
there are two senses in which Metageometry is possible. The first concerns
our actual space, and asserts that it may have a very small space-constant;
the second concerns philosophical theories of space, and asserts a purely
logical possibility, which leaves the decision to experience. We saw also
that Lotze's mathematical strictures arose from insufficient knowledge of
the subject, and could all be refuted by a better acquaintance with
Metageometry.

Finally, we discussed the question of absolute magnitude, and found in
it no logical obstacle to non-Euclidean spaces. Our conclusion, then, in so
far as we are as yet entitled to a conclusion, is that all spaces with a space-
constant are à priori justifiable, and that the decision between them must
be the work of experience. Spaces without a space-constant, on the other
hand, spaces, that is, which are not homogeneous throughout, we found
logically unsound and impossible to know, and therefore to be condemned
à priori. The constructive proof of this thesis will form the argument of
the following chapter.
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CH A PTER I I I .

Section A.
  

THE AXIOMS OF PROJECTIVE GEOMETRY.

102. Projective Geometry proper, as we saw in Chapter I., does not
employ the conception of magnitude, and does not, therefore, require those
axioms which, in the systems of the second or metrical period, were
required solely to render possible the application of magnitude to space.
But we saw, also, that Cayley's reduction of metrical to projective
properties was purely technical and philosophically irrelevant. Now it is in
metrical properties alone—apart from the exception to the axiom of the
straight line, which itself, however, presupposes metrical properties[116]—
that non-Euclidean and Euclidean spaces differ. The properties dealt with
by projective Geometry, therefore, in so far as these are obtained without
the use of imaginaries, are properties common to all spaces. Finally, the
differences which appear between the Geometries of different spaces of
the same curvature—e.g. between the Geometries of the plane and the
cylinder—are differences in projective properties[117]. Thus the necessity
which arises, in metrical Geometry, for further qualifications besides those
of constant curvature, disappears when our general space is defined by
purely projective properties.

103. We have good ground for expecting, therefore, that the axioms of
projective Geometry will be the simplest and most complete expression of
the indispensable requisites of any geometrical reasoning: and this
expectation, I hope, will not be disappointed. Projective Geometry, in so
far as it deals only with the properties common to all spaces, will be
found, if I am not mistaken, to be wholly à priori, to take nothing from
experience, and to have, like Arithmetic, a creature of the pure intellect for
its object. If this be so, it is that branch of pure mathematics which
Grassmann, in his Ausdehnungslehre of 1844, felt to be possible, and
endeavoured, in a brilliant failure, to construct without any appeal to the
space of intuition.



104. But unfortunately, the task of discovering the axioms of projective
Geometry is far from easy. They have, as yet, found no Riemann or
Helmholtz to formulate them philosophically. Many geometers have
constructed systems, which they intended to be, and which, with sufficient
care in interpretation, really are, free from metrical presuppositions. But
these presuppositions are so rooted in all the very elements of Geometry,
that the task of eliminating them demands a reconstruction of the whole
geometrical edifice. Thus Euclid, for example, deals, from the start, with
spatial equality—he employs the circle, which is necessarily defined by
means of equality, and he bases all his later propositions on the
congruence of triangles as discussed in Book I.[118] Before we can use any
elementary proposition of Euclid, therefore, even if this expresses a
projective property, we have to prove that the property in question can be
deduced by projective methods. This has not, in general, been done by
projective geometers, who have too often assumed, for example, that the
quadrilateral construction—by which, as we saw in Chap. I., they introduce
projective coordinates—or anharmonic ratio, which is primâ facie
metrical, could be satisfactorily established on their principles. Both these
assumptions, however, can be justified, and we may admit, therefore, that
the claims of projective Geometry to logical independence of
measurement or congruence are valid. Let us see, then, how it proceeds.

105. In the first place, it is important to realize that when coordinates
are used, in projective Geometry, they are not coordinates in the ordinary
metrical sense, i.e. the numerical measures of certain spatial magnitudes.
On the contrary, they are a set of numbers, arbitrarily but systematically
assigned to different points, like the numbers of houses in a street, and
serving only, from a philosophical standpoint, as convenient designations
for points which the investigation wishes to distinguish. But for the
brevity of the alphabet, in fact, they might, as in Euclid, be replaced by
letters. How they are introduced, and what they mean, has been discussed
in Chapter I. Here we have only to repeat a caution, whose neglect has led
to much misunderstanding.

106. The distinction between various points, then, is not a result, but a
condition, of the projective coordinate system. The coordinate system is a
wholly extraneous, and merely convenient, set of marks, which in no way
touches the essence of projective Geometry. What we must begin with, in



this domain, is the possibility of distinguishing various points from one
another. This may be designated, with Veronese, as the first axiom of
Geometry[119]. How we are to define a point, and how we distinguish it
from other points, is for the moment irrelevant; for here we only wish to
discover the nature of projective Geometry, and the kind of properties
which it uses and demonstrates. How, and with what justification, it uses
and demonstrates them, we will discuss later.

107. Now it is obvious that a mere collection of points, distinguished
one from another, cannot found a Geometry: we must have some idea of
the manner in which the points are interrelated, in order to have an
adequate subject-matter for discussion. But since all ideas of quantity are
excluded, the relations of points cannot be relations of distance in the
ordinary sense, nor even, in the sense of ordinary Geometry, anharmonic
ratios, for anharmonic ratios are usually defined as the ratios of four
distances, or of four sines, and are thus quantitative. But since all
quantitative comparison presupposes an identity of quality, we may expect
to find, in projective Geometry, the qualitative substrata of the metrical
superstructure.

And this, we shall see, is actually the case. We have not distance, but we
have the straight line; we have not quantitative anharmonic ratio, but we
have the property, in any four points on a line, of being the intersections
with the rays of a given pencil. And from this basis, we can build up a
qualitative science of abstract externality, which is projective Geometry.
How this happens, I shall now proceed to show.

108. All geometrical reasoning is, in the last resort, circular: if we start
by assuming points, they can only be defined by the lines or planes which
relate them; and if we start by assuming lines or planes, they can only be
defined by the points through which they pass. This is an inevitable circle,
whose ground of necessity will appear as we proceed. It is, therefore,
somewhat arbitrary to start either with points or with lines, as the
eminently projective principle of duality mathematically illustrates;
nevertheless we will elect, with most geometers, to start with points[120].
We suppose, therefore, as our datum, a set of discrete points, for the
moment without regard to their interconnections. But since connections
are essential to any reasoning about them as a system, we introduce, to



begin with, the axiom of the straight line. Any two of our points, we say,
lie on a line which those two points completely define. This line, being
determined by the two points, may be regarded as a relation of the two
points, or an adjective of the system formed by both together. This is the
only purely qualitative adjective—as will be proved later—of a system of
two points. Now projective Geometry can only take account of qualitative
adjectives, and can distinguish between different points only by their
relations to other points, since all points, per se, are qualitatively similar.
Hence it comes that, for projective Geometry, when two points only are
given, they are qualitatively indistinguishable from any two other points
on the same straight line, since any two such other points have the same
qualitative relation. Reciprocally, since one straight line is a figure
determined by any two of its points, and all points are qualitatively
similar, it follows that all straight lines are qualitatively similar. We may
regard a point, therefore, as determined by two straight lines which meet
in it, and the point, on this view, becomes the only qualitative relation
between the two straight lines. Hence, if the point only be regarded as
given, the two straight lines are qualitatively indistinguishable from any
other pair through the point.

109. The extension of these two reciprocal principles is the essence of
all projective transformations, and indeed of all projective Geometry. The
fundamental operations, by which figures are projectively transformed, are
called projection and section. The various forms of projection and section
are defined in Cremona's "Projective Geometry," Chapter I., from which I
quote the following account.

"To project from a fixed point S (the centre of projection) a figure
(ABCD ... abcd ...) composed of points and straight lines, is to construct
the straight lines or projecting rays SA, SB, SC, SD, ... and the planes
(projecting planes) Sa, Sb, Sc, Sd, ... We thus obtain a new figure
composed of straight lines and planes which all pass through the centre S.

"To cut by a fixed plane σ (transversal plane) a figure (αβγδ ... abcd ...)
made up of planes and straight lines, is to construct the straight lines or
traces σα, σβ, σγ ... and the points or traces σa, σb, σc....[121] By this means
we obtain a new figure composed of straight lines and points lying in the
plane σ.



"To project from a fixed straight line s (the axis) a figure ABCD
composed of points, is to construct the planes sA, sB, sC.... The figure thus
obtained is composed of planes which all pass through the axis s.

"To cut by a fixed straight line s (a transversal) a figure αβγδ ...
composed of planes, is to construct the points sα, sβ, sγ.... In this way a
new figure is obtained, composed of points all lying on the fixed
transversal s.

"If a figure is composed of straight lines a, b, c ... which all pass
through a fixed point or centre S, it can be projected from a straight line or
axis s passing through S; the result is a figure composed of planes sa, sb,
sc....

"If a figure is composed of straight lines a, b, c ... all lying in a fixed
plane, it may be cut by a straight line (transversal) s lying in the same
plane; the figure which results is formed by the points sa, sb, sc...."

110. The successive application, to any figure, of two reciprocal
operations of projection and section, is regarded as producing a figure
protectively indistinguishable from the first, provided only that the
dimensions of the original figure were the same as those of the resulting
figure, that, for example, if the second operation be section by a plane, the
original figure shall have been a plane figure. The figures obtained from a
given figure, by projection or section alone, are related to that figure by
the principle of duality, of which we shall have to speak later on.

I shall endeavour to show, in what follows, first, in what sense figures
obtained from each other by projective transformation are qualitatively
alike; secondly, what axioms, or adjectives of space, are involved in the
principle of projective transformation; and thirdly, that these adjectives
must belong to any form of externality with more than one dimension, and
are, therefore, à priori properties of any possible space.

For the sake of simplicity, I shall in general confine myself to two
dimensions. In so doing, I shall introduce no important difference of
principle, and shall greatly simplify the mathematics involved.

111. The two mathematically fundamental things in projective
Geometry are anharmonic ratio, and the quadrilateral construction.



Everything else follows mathematically from these two. Now what is
meant, in projective Geometry, by anharmonic ratio?



If we start from anharmonic ratio as ordinarily defined, we are met by
the difficulty of its quantitative nature[122]. But among the properties
deduced from this definition, many, if not most, are purely qualitative. The
most fundamental of these is that, if through any four points in a straight
line we draw four straight lines which meet in a point, and if we then draw
a new straight line meeting these four, the four new points of intersection
have the same anharmonic ratio as the four points we started with. Thus, in
the figure, abcd, a′b′c′d′, a″b″c″d″, all have the same anharmonic ratio. The
reciprocal relation holds for the anharmonic ratio of four straight lines.
Here we have, plainly, the required basis for a qualitative definition. The
definition must be as follows:

Two sets of four points each are defined as having the same anharmonic
ratio, when (1) each set of four lies in one straight line, and (2)
corresponding points of different sets lie two by two on four straight lines
through a single point, or when both sets have this relation to any third
set[123]. And reciprocally: Two sets of four straight lines are defined as
having the same anharmonic ratio when (1) each set of four passes through
a single point, and (2) corresponding lines of different sets pass, two by
two, through four points in one straight line, or when both sets have this
relation to any third set.

Two sets of points or of lines, which have the same anharmonic ratio,
are treated by projective Geometry as equivalent: this qualitative



equivalence replaces the quantitative equality of metrical Geometry, and is
obviously included, by its definition, in the above account of projective
transformations in general.

112. We have next to consider the quadrilateral construction[124]. This
has a double purpose: first, to define the important special case known as a
harmonic range; and secondly, to afford an unambiguous and exhaustive
method of assigning different numbers to different points. This last
method has, again, a double purpose: first, the purpose of giving a
convenient symbolism for describing and distinguishing different points,
and of thus affording a means for the introduction of analysis; and
secondly, of so assigning these numbers that, if they had the ordinary
metrical significance, as distances from some point on the numbered
straight line, they would yield –1 as the anharmonic ratio of a harmonic
range, and that, if four points have the same anharmonic ratio as four
others, so have the corresponding numbers. This last purpose is due to
purely technical motives: it avoids the confusion with our preconceptions
which would result from any other value for a harmonic range; it allows
us, when metrical interpretations of projective results are desired, to make
these interpretations without tedious numerical transformations, and it
enables us to perform projective transformations by algebraical methods.
At the same time, from the strictly projective point of view, as observed
above, the numbers introduced have a purely conventional meaning; and
until we pass to metrical Geometry, no reason can be shown for assigning
the value –1 to a harmonic range. With this preliminary, let us see in what
the quadrilateral construction consists.

113. A harmonic range, in elementary Geometry, is one whose
anharmonic ratio is –1, or one in which the three segments formed by the
four points are in harmonic progression, or again, one in which the ratio of
the two internal segments is equal to the ratio of the two external
segments. If a, b, c, d be the four points, it is easily seen that these
definitions are equivalent to one another: they give respectively:



ab
bc / ad

dc = – 1 ,    1
ab – 1

ac = 1
ac – 1

ad ,    and   ab
bc = ad

cd .

But as they are all quantitative, they cannot be used for our present
purpose. Nor are any definitions which involve bisection of lines or angles
available. We must have a definition which proceeds entirely by the help
of straight lines and points, without measurement of distances or angles.
Now from the above definitions of a harmonic range, we see that a, b, c, d
have the same anharmonic ratio as c, b, a, d. This gives us the property we
require for our definition. For it shows that, in a harmonic range, we can
find a projective transformation which will interchange a and c. This is a
necessary and sufficient condition for a harmonic range, and the
quadrilateral construction is the general method for giving effect to it.

Given any three points A, B, D in one straight line, the quadrilateral
construction finds the point C harmonic to A with respect to B, D by the
following method: Take any point O outside the straight line ABD, and join
it to B and D. Through A draw any straight line cutting OD, OB in P and Q.
Join DQ, BP, and let them intersect in R. Join OR, and let OR meet ABD in
C. Then C is the point required.

To prove this, let DRQ meet OA in T, and draw AR, meeting OD in S.
Then a projective transformation of A, B, C, D from R on to OD gives the
points S, P, O, D, which, projected from A on to DQ, give R, Q, T, D. But
these again, projected from O on to ABD, give C, B, A, D. Hence A, B, C, D
can be projectively transformed into C, B, A, D, and therefore form a
harmonic range. From this point, the proof that the construction is unique
and general follows simply[125].



The introduction of numbers, by this construction, offers no difficulties
of principle—except, indeed, those which always attend the application of
number to continua—and may be studied satisfactorily in Klein's Nicht-
Euklid (I. p. 337 ff.). The principle of it is, to assign the numbers 0, 1, ∞ to
A, B, D and therefore the number 2 to C, in order that the differences AB,
AC, AD may be in harmonic progression. By taking B, C, D as a new triad
corresponding to A, B, D, we find a point harmonic to B with respect to C,
D and assign to it the number 3, and so on. In this way, we can obtain any
number of points, and we are sure of having no number and no point twice
over, so that our coordinates have the essential property of a unique
correspondence with the points they denote, and vice versa.

114. The point of importance in the above construction, however, and
the reason why I have reproduced it in detail, is that it proceeds entirely by
means of the general principles of transformation enunciated above. From
this stage onwards, everything is effected by means of the two
fundamental ideas we have just discussed, and everything, therefore,
depends on our general principle of projective equivalence. This principle,
as regards two dimensions, may be stated more simply than in the passage
quoted from Cremona. It starts, in two dimensions, from the following
definitions:

To project the points A, B, C, D ... from a centre O, is to construct the
straight lines OA, OB, OC, OD....

To cut a number of straight lines a, b, c, d ... by a transversal s, is to
construct the points sa, sb, sc, sd....[126]

The successive application of these two operations, provided the
original figure consisted of points on one straight line or of straight lines
through one point, gives a figure projectively indistinguishable from the
former figure; and hence, by extension, if any points in one straight line in
the original figure lie in one straight line in the derived figure, and
reciprocally for straight lines through points, the two operations have
given projectively similar figures. This general principle may be regarded
as consisting of two parts, according to the order of the operations: if we
begin with projection and end with section, we transform a figure of points
into another figure of points; by the converse order, we transform a figure
of lines into another figure of lines.



115. Before we can be clear as to the meaning of our principle, we must
have some notion as to our definition of points and straight lines. But this
definition, in projective Geometry, cannot be given without some
discussion of the principle of duality, the mathematical form of the
philosophical circle involved in geometrical definitions.

Confining ourselves for the moment to two dimensions, the principle
asserts, roughly speaking, that any theorem, dealing with lines through a
point and points on a line, remains true if these two terms, wherever they
occur, are interchanged. Thus: two points lie on one straight line which
they completely determine; and two straight lines meet in one point, which
they completely determine. The four points of intersection of a transversal
with four lines through a point have an anharmonic ratio independent of
the particular transversal; and the four lines joining four points on one
straight line to a fifth point have an anharmonic ratio independent of that
fifth point. So also our general principle of projective transformation has
two sides: one in which points move along fixed lines, and one in which
lines turn about fixed points.

This duality suggests that any definition of points must be effected by
means of the straight line, and any definition of the straight line must be
effected by means of points. When we take the third dimension into
account, it is true, the duality is no longer so simple; we have now to take
account also of the plane, but this only introduces a circle of three terms,
which is scarcely preferable to a circle of two terms. We now say: Three
points, or a line and a point, determine a plane: but conversely, three
planes, or a line and plane, determine a point. We may regard the straight
line as a relation between two of its points, but we may also regard the
point as a relation between two straight lines through it. We may regard
the plane as a relation between three points, or between a point and a line,
but we may also regard the point as a relation between three planes, or
between a line and a plane, which meet in it.

116. How are we to get outside this circle? The fact is that, in pure
Geometry, we cannot get outside it. For space, as we shall see more fully
hereafter, is nothing but relations; if, therefore, we take any spatial figure,
and seek for the terms between which it is a relation, we are compelled, in
Geometry, to seek these terms within space, since we have nowhere else to



seek them, but we are doomed, since anything purely spatial is a mere
relation, to find our terms melting away as we grasp them.

Thus the relativity of space, while it is the essence of the principle of
duality, at the same time renders impossible the expression of that
principle, or of any other principle of pure Geometry, in a manner which
shall be free from contradictions. Nevertheless, if we are to advance at all
with our analysis of geometrical reasoning and with our definitions of
lines and points, we must, for a while, ignore this contradiction; we must
argue as though it did not exist, so as to free our science from any
contradictions which are not inevitable.

117. In accordance with this procedure, then, let us define our points as
the terms of spatial relations, regarding whatever is not a point as a
relation between points. What, on this view, must our points be taken to
be? Obviously, if extension is mere relativity, they must be taken to
contain no extension; but if they are to supply the terms for spatial
relations, e.g. for straight lines, these relations must exhibit them as the
terms of the figures they relate. In other words, since what can really be
taken, without contradiction, as the term of a spatial relation, is
unextended, we must take, as the term to be used in Geometry, where we
cannot go outside space, the least spatial thing which Geometry can deal
with, the thing which, though in space, contains no space; and this thing
we define as the point[127].

Neglecting, then, the fundamental contradiction in this definition, the
rest of our definitions follow without difficulty. The straight line is the
relation between two points, and the plane is the relation between three.
These definitions will be argued and defended at length in section B of this
Chapter[128], where we can discuss at the same time the alternative
metrical definitions; for our present purpose, it is sufficient to observe that
projective Geometry, from the first, regards the straight line as determined
by two points, and the plane as determined by three, from which it follows,
if we take points as possible terms for spatial relations, that the straight
line and the plane may be regarded as relations between two and three
points respectively. If we agree on these definitions, we can proceed to
discuss the fundamental principle of projective Geometry, and to analyse
the axioms implicated in its truth.



118. Projective Geometry, we have seen, does not deal with quantity, and
therefore recognizes no difference where the difference is purely
quantitative. Now quantitative comparison depends on a recognized
identity of quality; the recognition of qualitative identity, therefore, is
logically prior to quantity, and presupposed by every judgment of quantity.
Hence all figures, whose differences can be exhaustively described by
quantity, i.e. by pure measurement, must have an identity of quality, and
this must be recognizable without appeal to quantity. It follows that, by
defining the word quality in geometrical matters, we shall discover what
sets of figures are projectively indiscernible. If our definition is correct, it
ought to yield the general projective principle with which we set out.

119. We agreed to regard points as the terms of spatial relations, and we
agreed that different points could be distinguished. But we postponed the
discussion of the conditions under which this distinction could be effected.
This discussion will yield us the definition of quality and the proof of our
general projective principle.

Points, to begin with, have been defined as nothing but the terms for
spatial relations. They have, therefore, no intrinsic properties; but are
distinguished solely by means of their relations. Now the relation between
two points, we said, is the straight line on which they lie. This gives that
identity of quality for all pairs of points on the same straight line, which is
required both by our projective principle and by metrical Geometry. (For
only where there is identity of quality can quantity be properly applied.) If
only two points are given, they cannot, without the use of quantity, be
distinguished from any two other points on the same straight line; for the
qualitative relation between any two such points is the same as for the
original pair, and only by a difference of relation can points be
distinguished from one another.

But conversely, one straight line is nothing but the relation between two
of its points, and all points are qualitatively alike. Hence there can be
nothing to distinguish one straight line from another except the points
through which it passes, and these are distinguished from other points only
by the fact that it passes through them. Thus we get the reciprocal
transformation: if we are given only one point, any pair of straight lines
through that point is qualitatively indistinguishable from any other. This
again is, on the one hand, the basis of the second part of our general



projective principle, and on the other hand the condition of applying
quantity, in the measurement of angles, to the departure of two intersecting
straight lines.

120. We can now see the reason for what may have hitherto seemed a
somewhat arbitrary fact, namely, the necessity of four collinear points for
anharmonic ratio. Recurring to the quadrilateral construction and the
consequent introduction of number, we see that anharmonic ratio is an
intrinsic projective relation of four collinear points or concurrent straight
lines, such that given three terms and the relation, the fourth term can be
uniquely determined by projective methods. Now consider first a pair of
points. Since all straight lines are projectively equivalent, the relation
between one pair of points is precisely equivalent to that between another
pair. Given one point only, therefore, no projective relation, to any second
point, can be assigned, which shall in any way limit our choice of the
second point. Given two points, however, there is such a relation—the
third point may be given collinear with the first two. This limits its
position to one straight line, but since two points determine nothing but
one straight line, the third point cannot be further limited. Thus we see
why no intrinsic projective relation can be found between three points,
which shall enable us, from two, uniquely to determine the third. With
three given collinear points, however, we have more given than a mere
straight line, and the quadrilateral construction enables us uniquely to
determine any number of fresh collinear points. This shows why
anharmonic ratio must be a relation between four points, rather than
between three.

121. We can now prove, I think, that two figures, which are projectively
related, are qualitatively similar. Let us begin with a collection of points
on a straight line. So long as these are considered without reference to
other points or figures, they are all qualitatively similar. They can be
distinguished by immediate intuition, but when we endeavour, without
quantity, to distinguish them conceptually, we find the task impossible,
since the only qualitative relation of any two of them, the straight line, is
the same for any other two. But now let us choose, at hap-hazard, some
point outside the straight line. The points of our line now acquire new
adjectives, namely their relations to the new point, i.e. the straight lines
joining them to this new point. But these straight lines, reciprocally, alone



define our external point, and all straight lines are qualitatively similar. If
we take some other external point, therefore, and join it to the same points
of our original straight line, we obtain a figure in which, so long as
quantity is excluded, there is no conceptual difference from the former
figure. Immediate intuition can distinguish the two figures, but qualitative
discrimination cannot do so. Thus we obtain a projective transformation of
four lines into four other lines, as giving a figure qualitatively
indistinguishable from the original figure. A similar argument applies to
the other projective transformations. Thus the only reason, within
projective Geometry, for not regarding projective figures as actually
identical, is the intuitive perception of difference of position. This is
fundamental, and must be accepted as a datum. It is presupposed in the
distinction of various points, and forms the very life of Geometry. It is, in
fact, the essence of the notion of a form of externality, which notion forms
the subject-matter of projective Geometry.

122. We may now sum up the results of our analysis of projective
Geometry, and state the axioms on which its reasoning is based. We shall
then have to prove that these axioms are necessary to any form of
externality, with which we shall pass, from mere analysis, to a
transcendental argument.

The axioms which have been assumed in the above analysis, and which,
it would seem, suffice to found projective Geometry, may be roughly
stated as follows:

I. We can distinguish different parts of space, but all parts are
qualitatively similar, and are distinguished only by the immediate fact that
they lie outside one another.

II. Space is continuous and infinitely divisible; the result of infinite
division, the zero of extension, is called a point[129].

III. Any two points determine a unique figure, called a straight line, any
three in general determine a unique figure, the plane. Any four determine a
corresponding figure of three dimensions, and for aught that appears to the
contrary, the same may be true of any number of points. But this process
comes to an end, sooner or later, with some number of points which
determine the whole of space. For if this were not the case, no number of



relations of a point to a collection of given points could ever determine its
relation to fresh points, and Geometry would become impossible[130].

This statement of the axioms is not intended to have any exclusive
precision: other statements equally valid could easily be made. For all
these axioms, as we shall see hereafter, are philosophically
interdependent, and may, therefore, be enunciated in many ways. The
above statement, however, includes, if I am not mistaken, everything
essential to projective Geometry, and everything required to prove the
principle of projective transformation. Before discussing the apriority of
these axioms, let us once more briefly recapitulate the ends which they are
intended to attain.

123. From the exclusively mathematical standpoint, as we have seen,
projective Geometry discusses only what figures can be obtained from
each other by projective transformations, i.e. by the operations of
projection and section. These operations, in all their forms, presuppose the
point, straight line, and plane[131], whose necessity for projective
Geometry, from the purely mathematical point of view, is thus self-evident
from the start. But philosophically, projective Geometry has, as we saw, a
wider aim. This wider aim, which gives, to the investigation of
projectively equivalent figures, its chief importance, consists in the
determination of qualitative spatial similarity, in the determination, that is,
of all the figures which, when any one figure is given, can be distinguished
from the given figure, so long as quantity is excluded, only by the mere
fact that they are external to it.

124. Now when we consider what is involved in such absolute
qualitative equivalence, we find at once, as its most obvious prerequisite,
the perfect homogeneity of space. For it is assumed that a figure can be
completely defined by its internal relations, and that the external relations,
which constitute its position, though they suffice to distinguish it from
other figures, in no way affect its internal properties, which are regarded
as qualitatively identical with those of figures with quite different external
relations. If this were not the case, anything analogous to projective
transformation would be impossible. For such transformation always
alters the position, i.e. the external relations, of a figure, and could not,
therefore, if figures were dependent on their relations to other figures or to



empty space, be studied without reference to other figures, or to the
absolute position of the original figure. We require for our principle, in
short, what may be called the mutual passivity and reciprocal
independence of two parts or figures of space.

This passivity and this independence involve the homogeneity of space,
or its equivalent, the relativity of position. For if the internal properties of
a figure are the same, whatever its external relations may be, it follows
that all parts of space are qualitatively similar, since a change of external
relation is a change in the part of space occupied. It follows, also, that all
position is relative and extrinsic, i.e., that the position of a point, or the
part of space occupied by a figure, is not, and has no effect upon, any
intrinsic property of the point or figure, but is exclusively a relation to
other points or figures in space, and remains without effect except where
such relations are considered.

125. The homogeneity of space and the relativity of position, therefore,
are presupposed in the qualitative spatial comparison with which
projective Geometry deals. The latter, as we saw, is also the basis of the
principle of duality. But these properties, as I shall now endeavour to
prove, belong of necessity to any form of externality, and are thus à priori
properties of all possible spaces. To prove this, however, we must first
define the notion of a form of externality in general.

Let us observe, to begin with, that the distinction between Euclidean and
non-Euclidean Geometries, so important in metrical investigations,
disappears in projective Geometry proper. This suggests that projective
Geometry, though originally invented as the science of Euclidean space,
and subsequently of non-Euclidean spaces also, deals really with a wider
conception, a conception which includes both, and neglects the attributes
in which they differ. This conception I shall speak of as a form of
externality.

126. In Grassmann's profound philosophical introduction to his
Ausdehnungslehre of 1844, he suggested that Geometry, though
improperly regarded as pure, was really a branch of applied mathematics,
since it dealt with a subject-matter not created, like number, by the
intellect, but given to it, and therefore not wholly subject to its laws alone.
But it must be possible—so he contended—to construct a branch of pure



mathematics, a science, that is, in which our object should be wholly a
creature of the intellect, which should yet deal, as Geometry does, with
extension—extension as conceived, however, not as empirically perceived
in sensation or intuition.

From this point of view, the controversy between Kantians and anti-
Kantians becomes wholly irrelevant, since the distinction between pure
and mixed mathematics does not lie in the distinction between the
subjective and the objective, but between the purely intellectual on the one
hand, and everything else on the other. Now Kant had contended, with
great emphasis, that space was not an intellectual construction, but a
subjective intuition. Geometry, therefore, with Grassmann's distinction,
belongs to mixed mathematics as much on Kant's view as on that of his
opponents. And Grassmann's distinction, I contend, is the more important
for Epistemology, and the one to be adopted in distinguishing the à priori
from the empirical. For what is merely intuitional can change, without
upsetting the laws of thought, without making knowledge formally
impossible: but what is purely intellectual cannot change, unless the laws
of thought should change, and all our knowledge simultaneously collapse.
I shall therefore follow Grassmann's distinction in constructing an à priori
and purely conceptual form of externality.

127. The pure doctrine of extension, as constructed by Grassmann, need
not be discussed—it included much empirical material, and was
philosophically a failure. But his principles, I think, will enable us to
prove that projective Geometry, abstractly interpreted, is the science which
he foresaw, and deals with a matter which can be constructed by the pure
intellect alone. If this be so, however, it must be observed that projective
Geometry, for the moment, is rendered purely hypothetical[132]. All
necessary truth, as Bradley has shown, is hypothetical[133], and asserts,
primâ facie, only the ground on which rests the necessary connection of
premisses and conclusion. If we construct a mere conception of
externality, and thus abandon our actually given space, the result of our
construction, until we return to something actually given, remains without
existential import—if there be experienced externality, it asserts, then
there must be a form of externality with such and such properties. That
there must be experienced externality, Kant's first argument about space
proves, I think, to those who admit experience of a world of diverse but



interrelated things. But this is a question which belongs to the next
Chapter.

What we have to do here is, not to discuss whether there is a form of
externality, but whether, if there be such a form, it must possess the
properties embodied in the axioms of projective Geometry. Now first of
all, what do we mean by such a form?

128. In any world in which perception presents us with various things,
with discriminated and differentiated contents, there must be, in
perception, at least one "principle of differentiation[134]," an element, that
is, by which the things presented are distinguished as various. This
element, taken in isolation, and abstracted from the content which it
differentiates, we may call a form of externality. That it must, when taken
in isolation, appear as a form, and not as a mere diversity of material
content, is, I think, fairly obvious. For a diversity of material content
cannot be studied apart from that material content; what we wish to study
here, on the contrary, is the bare possibility of such diversity, which forms
the residuum, as I shall try to prove hereafter[135], when we abstract from
any sense-perception all that is distinctive of its particular matter. This
possibility, then, this principle of bare diversity, is our form of externality.
How far it is necessary to assume such a form, as distinct from interrelated
things, I shall consider later on[136]. For the present, since space, as dealt
with by Geometry, is certainly a form of this kind, we have only to ask:
What properties must such a form, when studied in abstraction,
necessarily possess?

129. In the first place, externality is an essentially relative conception—
nothing can be external to itself. To be external to something is to be
another with some relation to that thing. Hence, when we abstract a form
of externality from all material content, and study it in isolation, position
will appear, of necessity, as purely relative—a position can have no
intrinsic quality, for our form consists of pure externality, and externality
contains no shadow or trace of an intrinsic quality. Thus we obtain our
fundamental postulate, the relativity of position, or, as we may put it, the
complete absence, on the part of our form, of any vestige of thinghood.

The same argument may also be stated as follows: If we abstract the
conception of externality, and endeavour to deal with it per se, it is evident



that we must obtain an object alike destitute of elements and of totality.
For we have abstracted from the diverse matter which filled our form,
while any element, or any whole, would retain some of the qualities of a
matter. Either an element or a whole, in fact, would have to be a thing not
external to itself, and would thus contain something not pure externality.
Hence arise infinite divisibility, with the self-contradictory notion of the
point, in the search for elements, and unbounded extension, with the
contradiction of an infinite regress or a vicious circle, in the search for a
completed whole. Thus again, our form contains neither elements nor
totality, but only endless relations—the terms of these relations being
excluded by our abstraction from the matter which fills our form.

130. In like manner we can deduce the homogeneity of our form. The
diversity of content, which was possible only within the form of
externality, has been abstracted from, leaving nothing but the bare
possibility of diversity, the bare principle of differentiation, itself uniform
and undifferentiated. For if diversity presupposes such a form, the form
cannot, unless it were contained in a fresh form, be itself diverse or
differentiated.

Or we may deduce the same property from the relativity of position. For
any quality in one position, by which it was marked out from another,
would be necessarily more or less intrinsic, and would contradict the pure
relativity. Hence all positions are qualitatively alike, i.e. the form is
homogeneous throughout.

131. From what has been said of homogeneity and relativity, follows
one of the strangest properties of a form of externality. This property is,
that the relation of externality between any two things is infinitely
divisible, and may be regarded, consequently, as made up of an infinite
number of the would-be elements of our form, or again as the sum of two
relations of externality[137]. To speak of dividing or adding relations may
well sound absurd—indeed it reveals the impropriety of the word relation
in this connexion. It is difficult, however, to find an expression which
shall be less improper. The fact seems to be, that externality is not so
much a relation as bare relativity, or the bare possibility of a relation. On
this subject, I shall enlarge in Chapter IV.[138] At this point it is only
important to realize, what the subsequent argument will assume, that the



relation—if we may so call it—of externality between two or more things
must, since our form is homogeneous, be capable of continuous alteration,
and must, since our infinitely divisible form is constituted by such
relations, be capable of infinite division. But the result of infinite division
is defined as the element of our form. (Our form has no elements, but we
have to imagine elements in order to reason about it, as will be shown
more fully in Chapter IV.) Hence it follows, that every relation of
externality may be regarded, for scientific purposes, as an infinite
congeries of elements, though philosophically, the relations alone are
valid, and the elements are a self-contradictory result of hypostatizing the
form of externality. This way of regarding relations of externality is
important in understanding the meaning of such ideas as three or four
collinear points.

As this point is difficult and important, I will repeat, in somewhat
greater detail, the explanation of the manner in which straight lines and
planes come to be regarded as congeries of points. From the strictly
projective standpoint, though all other figures are merely a collection of
any required number of points, lines or planes, given by some projective
construction, straight lines and planes themselves are given integrally, and
are not to be considered as divisible or composed of parts. To say that a
point lies on a straight line means, for projective Geometry proper, that
the straight line is a relation between this and some other point. Here the
points concerned, if our statement is to be freed from contradictions, must
be regarded, if I may use such an expression, as real points—i.e. as
unextended material centres[139]. Straight lines and planes are then
relations between these material atoms. They are relations, however,
which may undergo a metrical alteration while remaining projectively
unchanged. When the projective relation between the two points A, B is the
same as that between the two points A, C, while the metrical relation
(distance) is different, the three points A, B, C are said to be collinear. Now
the metrical manner of regarding spatial figures demands that they should
be hypostatized, and no longer regarded as mere relations. For when we
regard a quantity as extensive, i.e. as divisible into parts, we necessarily
regard it as more than a mere relation or adjective, since no mere relation
or adjective can be divided. For quantitative treatment, therefore, spatial
relations must be hypostatized[140]. When this is done, we obtain, as we



saw above, a homogeneous and infinitely divisible form of externality. We
find now that distance, for example, may be continuously altered without
changing the straight line on which it is measured. We thus obtain, on the
straight line in question, a continuous series of points, which, since it is
continuous, we regard as constituting our straight line. It is thus solely
from the hypostatizing of relations, which metrical Geometry requires,
that the view of straight lines and planes as composed of points arises, and
it is from this hypostatizing that the difficulties of metrical Geometry
spring.

132. The next step, in defining a form of externality, is obtained from
the idea of dimensions. Positions, we have seen, are defined solely by their
relations to other positions. But in order that such definition may be
possible, a finite number of relations must suffice, since infinite numbers
are philosophically inadmissible. A position must be definable, therefore,
if knowledge of our form is to be possible at all, by some finite integral
number of relations to other positions. Every relation thus necessary for
definition we call a dimension. Hence we obtain the proposition: Any form
of externality must have a finite integral number of dimensions.

133. The above argument, it may be urged, has overlooked a possibility.
It has used a transcendental argument, so an opponent may contend,
without sufficiently proving that knowledge about externality must be
possible without reference to the matters external to each other. The
definition of a position may be impossible, so long as we neglect the
matter which fills the form, but may become possible when this matter is
taken into account. Such an objection can, I think, be successfully met, by
a reference to the passivity and homogeneity of our form. For any
dependence of the definition of a position on the particular matter filling
that position, would involve some kind of interaction between the matter
and its position, some effect of the diverse content on the homogeneous
form. But since the form is totally destitute of thinghood, perfectly
impassive, and perfectly void of differences between its parts, any such
effect is inconceivable. An effect on a position would have to alter it in
some way, but how could it be altered? It has no qualities except those
which make it the position it is, as opposed to other positions; it cannot
change, therefore, without becoming a different position. But such a
change contradicts the law of identity. Hence it is not the position which



has changed, but the content which has moved in the form. Thus it must be
possible, if knowledge of our form can be obtained at all, to obtain this
knowledge in logical independence of the particular matter which fills it.
The above argument, therefore, granted the possibility of knowledge in the
department in question, shows the necessity of a finite integral number of
dimensions.

134. Let us repeat our original argument in the light of this elucidation.
A position is completely defined when, and only when, enough relations
are known to enable us to determine its relation to any fresh known
position. Only by relations within the form of externality, as we have just
seen, and never by relations which involve a reference to the particular
matter filling the form, can such a definition be effected. But the
possibility of such a definition follows from the Law of Excluded Middle,
when this law is interpreted to mean, as Bosanquet makes it mean, that
"Reality ... is a system of reciprocally determinate parts[141]." For this
implies that, given the relations of a part A to other parts B, C ..., a
sufficient wealth of such relations throws light on the relations of B to C,
etc. If this were not the case, the parts A, B, C ... could not be said to form
such a system; for in such a system, to define A is to define, at the same
time, all the other members, and to give an adjective to A, is to give an
adjective to B and C. But the relations between positions are, when we
restore the matter from which the positions were abstracted, relations
between the things occupying those positions, and these relations, we have
seen, can be studied without reference to the particular nature, in other
respects, of the related things. It follows that, when we apply the general
principle of systematic unity to these relations in particular, we find these
relations to be dependent on each other, since they are not dependent, for
their definition, on anything else. This gives the axiom of dimensions, in
the above general form, as the result, on our abstract geometrical level, of
the relativity of position and the law of excluded middle.

135. Before proceeding further, it is necessary to discuss the important
special case where a form of externality has only one dimension. Of the
two such forms, given in experience, one, namely time, presents an
instance of this special case. But it may be shown, I think, that the
function, in constituting the possibility of experience, which we demand of
such forms, could not be accomplished by a one-dimensional form alone.



For in a one-dimensional form, the various contents may be arranged in a
series, and cannot, without interpenetration, change the order of contents
in the series. But interpenetration is impossible, since a form of
externality is the mere expression of diversity among things, from which it
follows that things cannot occupy the same position in a form, unless there
is another form by which to differentiate them. For without externality,
there is no diversity[142]. Thus two bodies may occupy the same space, but
only at different times: two things may exist simultaneously, but only at
different places. A form of one dimension, therefore, could not, by itself,
allow that change of the relations of externality, by which alone a varied
world of interrelated things can be brought into consciousness. In a one-
dimensional space, for example, only a single object, which must appear
as a point, or two objects at most, one in front and one behind, could ever
be perceived. Thus two or more dimensions seem an essential condition of
anything worth calling an experience of interrelated things.

136. It may be objected, to this argument, that its validity depends upon
the assumption that the change of a relation of externality must be
continuous. Both to make and to meet this objection, in a manner which
shall not imply time, seems almost impossible. For we cannot speak of
change, whether continuous or discrete, without imagining time. Let us,
therefore, allow time to be known, and discuss whether the temporal
change, in any other form of externality, is necessarily continuous[143]. We
must reply, I think, that continuity is necessary. The change of relation, in
our non-temporal form, may be safely described as motion, and the law of
Causality—since we have already assumed time—may be applied to this
motion. It then follows that discrete motion would involve a finite effect
from an infinitesimal cause, for a cause acting only for a moment of time
would be infinitesimal. It involves, also, a validity in the point of time,
whereas what is valid in any form of externality is not, as we have already
seen, the infinitesimal and self-contradictory element resulting from
infinite division, but the finite relation which mathematics analyzes into
vanishing elements. Hence change must be continuous, and the possibility
of serial arrangement holds good.

In a one-dimensional form other than time, the same argument must
hold. For something analogous to Causality would be necessary to
experience, and the relativity of the form would still necessarily hold.



Hence, since only these two properties of time have been assumed, the
above contention would remain valid of any second form whose relations
were correlated with those of the first, as the analogue of Causality would
require them to be.

137. The next step in the argument, which assumes two or more
dimensions, is concerned with the general analogues of straight lines and
planes, i.e. with figures—which may be regarded either as relations
between positions or as series of positions—uniquely determined by two
or by three positions. If this step can be successfully taken, our deduction
of the above projective axioms will be complete, and descriptive
Geometry will be established as the abstract à priori doctrine of forms of
externality.

To prove this contention, consider of what nature the relations can be by
which positions are defined. We have seen already that our form is purely
relational and infinitely divisible, and that positions (points) are the self-
contradictory outcome of the search for something other than relations.
What we really mean, therefore, by the relations defining a position, is,
when we undo our previous abstraction, the relations of externality by
which some thing is related to other things. But how, when we remain in
the abstract form, must such relations appear?

138. We have to prove that two positions must have a relation
independent of any reference to other positions. To prove this, let us recur
to what was said, in connection with dimensions, as to the passivity and
homogeneity of our form. Since positions are defined only by relations,
there must be relations, within the form, between positions. But if there
are such relations, there must be a relation which is intrinsic to two
positions. For to suppose the contrary, is to attribute an interaction or
causal connection, of some kind, between those two positions and other
positions—a supposition which the perfect homogeneity of our form
renders absurd, since all positions are qualitatively similar, and cannot be
changed without losing their identity. We may put this argument thus:
since positions are only defined by their relations, such definition could
never begin, unless it began with a relation between only two positions.
For suppose three positions A, B, C were necessary, and gave rise to the
relation abc between the three. Then there would remain no means of
defining the different pairs BC, CA, AB, since the only relation defining



them would be one common to all three pairs. Nothing would be gained, in
this case, by reference to fresh points, for it follows, from the
homogeneity and passivity of the form, that these fresh points could not
affect the internal relations of our triad, which relations, if they can give
definiteness at all, must give it without the aid of external reference. Two
positions must, therefore, if definition is to be possible, have some
relation which they by themselves suffice to define. Precisely the same
argument applies to three positions, or to four; the argument loses its
scope only when we have exhausted the dimensions of the form
considered. Thus, in three dimensions, five positions have no fresh
relation, not deducible from those already known, for by the definition of
dimensions, all the relations involved can be deduced from those of the
fourth point to the first three, together with those of the fifth to the first
three.

We may give the argument a more concrete, and perhaps a more
convincing shape, by considering the matter arranged in our form. If two
things are mutually external, they must since they belong to the same
world, have some relation of externality; there is, therefore, a relation of
externality between two things. But since our form is homogeneous, the
same relation of externality may subsist in other parts of the form, i.e.
while the two things considered alter their relations of externality to other
things. The relation of externality between two things is, therefore,
independent of other things. Hence, when we return to the abstract
language of the form, two positions have a relation determined by those
two positions alone, and independent of other positions.

Precisely the same argument applies to the relations of three positions,
and in each case the relation must appear in the form as not a mere
inference from the positions it relates. For relations, as we have seen,
actually constitute a form of externality, and are not mere inferences from
terms, which are nowhere to be found in the form[144].

To sum up: Since position is relative, two positions must have some
relation to each other; and since our form of externality is homogeneous,
this relation can be kept unchanged while the two positions change their
relations to other positions. Hence their relation is intrinsic, and
independent of other positions. Since the form is a mere complex of
relations, the relation in question must, if the form is sensuous or intuitive,



be itself sensuous or intuitive, and not a mere inference. In this case, a
unique relation must be a unique figure—in spatial terms, the straight line
joining the two points.

139. With this, our deduction of projective Geometry from the à priori
conceptual properties of a form of externality is completed. That such a
form, when regarded as an independent thing, is self-contradictory, has
been abundantly evident throughout the discussion. But the science of the
form has been founded on the opposite way of regarding it: we have held it
throughout to be a mere complex of relations, and have deduced its
properties exclusively from this view of it. The many difficulties, in
applying such an à priori deduction to intuitive space, and in explaining,
as logical necessities, properties which appear as sensuous or intuitional
data, must be postponed to Chapter IV. For the present, I wish to point out
that projective Geometry is wholly à priori; that it deals with an object
whose properties are logically deduced from its definition, not empirically
discovered from data; that its definition, again, is founded on the
possibility of experiencing diversity in relation, or multiplicity in unity;
and that our whole science, therefore, is logically implied in, and
deducible from, the possibility of such experience.

140. In metrical Geometry, on the contrary, we shall find a very
different result. Although the geometrical conditions which render spatial
measurement possible, will be found identical, except for slight
differences in the form of statement, with the à priori axioms discussed
above, yet the actual measurement—which deals with actually given
space, not the mere intellectual construction we have been just discussing
—gives results which can only be known empirically and approximately,
and can be deduced by no necessity of thought. The Euclidean and non-
Euclidean spaces give the various results which are à priori possible; the
axioms peculiar to Euclid—which are properly not axioms, but empirical
results of measurement—determine, within the errors of observation,
which of these à priori possibilities is realized in our actual space. Thus
measurement deals throughout with an empirically given matter, not with
a creature of the intellect, and its à priori elements are only the conditions
presupposed in the possibility of measurement. What these conditions are,
we shall see in the second section of this chapter.



Section B.
  

THE AXIOMS OF METRICAL GEOMETRY.

141. We have now reviewed the axioms of projective Geometry, and
have seen that they are à priori deductions from the fact that we can
experience externality, i.e. a coexistent multiplicity of different but
interrelated things. But projective Geometry, in spite of its claims, is not
the whole science of space, as is sufficiently proved by the fact that it
cannot discriminate between Euclidean and non-Euclidean spaces[145]. For
this purpose, spatial measurement is required: metrical Geometry, with its
quantitative tests, can alone effect the discrimination. For all application
of Geometry to physics, also, measurement is required; the law of
gravitation, for example, requires the determination of actual distances.
For many purposes, in short, projective Geometry is wholly insufficient:
thus it is unable to distinguish between different kinds of conics, though
their distinction is of fundamental importance in many departments of
knowledge.

Metrical Geometry is, then, a necessary part of the science of space, and
a part not included in descriptive Geometry. Its à priori element,
nevertheless, so far as this is spatial and not arithmetical, is the same as
the postulate of projective Geometry, namely, the homogeneity of space, or
its equivalent, the relativity of position. We can see, in fact, that the à
priori element in both is likely to be the same. For the à priori in metrical
Geometry will be whatever is presupposed in the possibility of spatial
measurement, i.e. of quantitative spatial comparison. But such comparison
presupposes simply a known identity of quality, the determination of
which is precisely the problem of projective Geometry. Hence the
conditions for the possibility of measurement, in so far as they are not
arithmetical, will be precisely the same as those for projective Geometry.

142. Metrical Geometry, therefore, though distinct from projective
Geometry, is not independent of it, but presupposes it, and arises from its
combination with the extraneous idea of quantity. Nevertheless the
mathematical form of the axioms, in metrical Geometry, is slightly
different from their form in projective Geometry. The homogeneity of



space is replaced by its equivalent, the axiom of Free Mobility. The axiom
of the straight line is replaced by the axiom of distance: Two points
determine a unique quantity, distance, which is unaltered in any motion of
the two points as a single figure. This axiom, indeed, will be found to
involve the axiom of the straight line—such a quantity could not exist
unless the two points determined a unique curve—but its mathematical
form is changed. Another important change is the collapse of the principle
of duality: quantity can be applied to the straight line, because it is
divisible into similar parts, but cannot be applied to the indivisible point.
We thus obtain a reason, which was wanting in descriptive Geometry, for
preferring points, as spatial elements, to straight lines or planes[146].
Finally, an entirely new idea is introduced with quantity, namely, the idea
of Motion. Not that we study motion, or that any of our results have
reference to motion, but that they cannot, though in projective Geometry
they could, be obtained without at least an ideal motion of our figures
through space.

Let us now examine in detail the prerequisites of spatial measurement.
We shall find three axioms, without which such measurement would be
impossible, but with which it is adequate to decide, empirically and
approximately, the Euclidean or non-Euclidean nature of our actual space.
We shall find, further, that these three axioms can be deduced from the
conception of a form of externality, and owe nothing to the evidence of
intuition. They are, therefore, like their equivalents the axioms of
projective Geometry, à priori, and deducible from the conditions of spatial
experience. This experience, accordingly, can never disprove them, since
its very existence presupposes them.

I. The Axiom of Free Mobility.

143. Metrical Geometry, to begin with, may be defined as the science
which deals with the comparison and relations of spatial magnitudes. The
conception of magnitude, therefore, is necessary from the start. Some of
Euclid's axioms, accordingly, have been classed as arithmetical, and have
been supposed to have nothing particular to do with space. Such are the
axioms that equals added to or subtracted from equals give equals, and
that things which are equal to the same thing are equal to one another.
These axioms, it is said, are purely arithmetical, and do not, like the



others, ascribe an adjective to space. As regards their use in arithmetic,
this is of course true. But if an arithmetical axiom is to be applied to
spatial magnitudes, it must have some spatial import[147], and thus even
this class is not, in Geometry, merely arithmetical. Fortunately, the
geometrical element is the same in all the axioms of this class—we can
see at once, in fact, that it can amount to no more than a definition of
spatial magnitude[148]. Again, since the space with which Geometry deals
is infinitely divisible, a definition of spatial magnitude reduces itself to a
definition of spatial equality, for, as soon as we have this last, we can
compare two spatial magnitudes by dividing each into a number of equal
units, and counting the number of such units in each[149]. The ratio of the
number of units is, of course, the ratio of the two magnitudes.

144. We require, then, at the very outset, some criterion of spatial
equality: without such a criterion metrical Geometry would become
wholly impossible. It might appear, at first sight, as though this need not
be an axiom, but might be a mere definition. In part this is true, but not
wholly. The part which is merely a definition is given in Euclid's eighth
axiom: "Magnitudes which exactly coincide are equal." But this gives a
sufficient criterion only when the magnitudes to be compared already
occupy the same position. When, as will normally be the case, the two
spatial magnitudes are external to one another—as, indeed, must be the
case, if they are distinct, and not whole and part—the two magnitudes can
only be made to coincide by a motion of one or both of them. In order,
therefore, that our definition of spatial magnitude may give unambiguous
results, coincidence when superposed, if it can ever occur, must occur
always, whatever path be pursued in bringing it about. Hence, if mere
motion could alter shapes, our criterion of equality would break down. It
follows that the application of the conception of magnitude to figures in
space involves the following axiom[150]: Spatial magnitudes can be moved
from place to place without distortion; or, as it may be put, Shapes do not
in any way depend upon absolute position in space.

The above axiom is the axiom of Free Mobility[151]. I propose to prove
(1) that the denial of this axiom would involve logical and philosophical
absurdities, so that it must be classed as wholly à priori; (2) that metrical
Geometry, if it refused this axiom, would be unable, without a logical
absurdity, to establish the notion of spatial magnitude at all. The



conclusion will be, that the axiom cannot be proved or disproved by
experience, but is an à priori condition of metrical Geometry. As I shall
thus be maintaining a position which has been much controverted,
especially by Helmholtz and Erdmann, I shall have to enter into the
arguments at some length.

145. A. Philosophical Argument. The denial of the axiom involves
absolute position, and an action of mere space, per se, on things. For the
axiom does not assert that real bodies, as a matter of empirical fact, never
change their shape in any way during their passage from place to place: on
the contrary, we know that such changes do occur, sometimes in a very
noticeable degree, and always to some extent. But such changes are
attributed, not to the change of place as such, but to physical causes:
changes of temperature, pressure, etc. What our axiom has to deal with is
not actual material bodies, but geometrical figures[152], and it asserts that
a figure which is possible in any one position in space is possible in every
other. Its meaning will become clearer by reference to a case where it does
not hold, say the space formed by the surface of an egg. Here, a triangle
drawn near the equator cannot be moved without distortion to the point, as
it would no longer fit the greater curvature of the new position: a triangle
drawn near the point cannot be fitted on to the flatter end, and so on. Thus
the method of superposition, such as Euclid employs in Book I. Prop. IV.,
becomes impossible; figures cannot be freely moved about, indeed, given
any figure, we can determine a certain series of possible positions for it on
the egg, outside which it becomes impossible. What I assert is, then, that
there is a philosophic absurdity in supposing space in general to be of this
nature. On the egg we have marked points, such as the two ends; the space
formed by its surface is not homogeneous, and if things are moved about
in it, it must of itself exercise a distorting effect upon them, quite
independently of physical causes; if it did not exercise such an effect, the
things could not be moved. Thus such a space would not be homogeneous,
but would have marked points, by reference to which bodies would have
absolute position, quite independently of any other bodies. Space would no
longer be passive, but would exercise a definite effect upon things, and we
should have to accommodate ourselves to the notion of marked points in
empty space; these points being marked, not by the bodies which occupied
them, but by their effects on any bodies which might from time to time



occupy them. This want of homogeneity and passivity is, however, absurd;
space must, since it is a form of externality, allow only of relative, not of
absolute, position, and must be completely homogeneous throughout. To
suppose it otherwise, is to give it a thinghood which no form of externality
can possibly possess. We must, then, on purely philosophical grounds,
admit that a geometrical figure which is possible anywhere is possible
everywhere, which is the axiom of Free Mobility.

146. B. Geometrical Argument. Let us see next what sort of Geometry
we could construct without this axiom. The ultimate standard of
comparison of spatial magnitudes must, as we saw in introducing the
axiom, be equality when superposed; but need we, from this equality, infer
equality when separated? It has been urged by Erdmann that, for the more
immediate purposes of Geometry, this would be unnecessary[153]. We
might construct a new Geometry, he thinks, in which sizes varied with
motion on any definite law. Such a view, as I shall show below, involves a
logical error as to the nature of magnitude. But before pointing this out, let
us discuss the geometrical consequences of assuming its truth. Suppose
the length of an infinitesimal arc in some standard position were ds; then
in any other position p its length would be ds.f(p), where the form of the
function f(p) must be supposed known. But how are we to determine the
position p? For this purpose, we require p's coordinates, i.e., some
measurement of distance from the origin. But the distance from the origin
could only be measured if we assumed our law f(p) to measure it by. For
suppose the origin to be O, and Op to be a straight line whose length is
required. If we have a measuring rod with which we travel along the line
and measure successive infinitesimal arcs, the measuring rod will change
its size as we move, so that an arc which appears by the measure to be ds
will really be f(s).ds, where s is the previously traversed distance. If, on
the other hand, we move our line Op slowly through the origin, and
measure each piece as it passes through, our measure, it is true, will not
alter, but now we have no means of discovering the law by which any
element has changed its length in coming to the origin. Hence, until we
assume our function f(p), we have no means of determining p, for we have
just seen that distances from the origin can only be estimated by means of
the law f(p). It follows that experience can neither prove nor disprove the
constancy of shapes throughout motion, since, if shapes were not constant,



we should have to assume a law of their variation before measurement
became possible, and therefore measurement could not itself reveal that
variation to us[154].

Nevertheless, such an arbitrarily assumed law does, at first sight, give a
mathematically possible Geometry. The fundamental proposition, that two
magnitudes which can be superposed in any one position can be
superposed in any other, still holds. For two infinitesimal arcs, whose
lengths in the standard position are ds1 and ds2, would, in any other
position p, have lengths f(p).ds1 and f(p).ds2, so that their ratio would be
unaltered. From this constancy of ratio, as we know through Riemann and
Helmholtz, the above proposition follows. Hence all that Geometry
requires, it would seem, as a basis for measurement, is an axiom that the
alteration of shapes during motion follows a definite known law, such as
that assumed above.

147. There is, however, in such a view, as I remarked above, a logical
error as to the nature of magnitude. This error has been already pointed out
in dealing with Erdmann[155], and need only be briefly repeated here. A
judgment of magnitude is essentially a judgment of comparison: in
unmeasured quantity, comparison as to the mere more or less, but in
measured magnitude, comparison as to the precise how many times. To
speak of differences of magnitude, therefore, in a case where comparison
cannot reveal them, is logically absurd. Now in the case contemplated
above, two magnitudes, which appear equal in one position, appear equal
also when compared in another position. There is no sense, therefore, in
supposing the two magnitudes unequal when separated, nor in supposing,
consequently, that they have changed their magnitudes in motion. This
senselessness of our hypothesis is the logical ground of the mathematical
indeterminateness as to the law of variation. Since, then, there is no means
of comparing two spatial figures, as regards magnitude, except
superposition, the only logically possible axiom, if spatial magnitude is to
be self-consistent, is the axiom of Free Mobility in the form first given
above.

148. Although this axiom is à priori, its application to the measurement
of actual bodies, as we found in discussing Helmholtz's views, always
involves an empirical element[156]. Our axiom, then, only supplies the à



priori condition for carrying out an operation which, in the concrete, is
empirical—just as arithmetic supplies the à priori condition for a census.
As this topic has been discussed at length in Chapter II., I shall say no
more about it here.

149. There remain, however, a few objections and difficulties to be
discussed. First, how do we obtain equality in solids, and in Kant's cases of
right and left hands, or of right and left-handed screws, where actual
superposition is impossible? Secondly, how can we take congruence as the
only possible basis of spatial measurement, when we have before us the
case of time, where no such thing as congruence is conceivable? Thirdly, it
might be urged that we can immediately estimate spatial equality by the
eye, with more or less accuracy, and thus have a measure independent of
congruence. Fourthly, how is metrical Geometry possible on non-
congruent surfaces, if congruence be the basis of spatial measurement? I
will discuss these objections successively.

150. (1) How do we measure the equality of solids? These could only be
brought into actual congruence if we had a fourth dimension to operate
in[157], and from what I have said before of the absolute necessity of this
test, it might seem as though we should be left here in utter ignorance.
Euclid is silent on the subject, and in all works on Geometry it is assumed
as self-evident that two cubes of equal side are equal. This assumption
suggests that we are not so badly off as we should have been without
congruence, as a test of equality in one or two dimensions; for now we can
at least be sure that two cubes have all their sides and all their faces equal.
Two such cubes differ, then, in no sensible spatial quality save position,
for volume, in this case at any rate, is not a sensible quality. They are,
therefore, as far as such qualities are concerned, indiscernible. If their
places were interchanged, we might know the change by their colour, or by
some other non-geometrical property; but so far as any property of which
Geometry can take cognisance is concerned, everything would seem as
before. To suppose a difference of volume, then, would be to ascribe an
effect to mere position, which we saw to be inadmissible while discussing
Free Mobility. Except as regards position, they are geometrically
indiscernible, and we may call to our aid the Identity of Indiscernibles to
establish their agreement in the one remaining geometrical property of
volume. This may seem rather a strange principle to use in Mathematics,



and for Geometry their equality is, perhaps, best regarded as a definition;
but if we demand a philosophical ground for this definition, it is, I believe,
only to be found in the Identity of Indiscernibles. We can, without error,
make our definition of three-dimensional equality rest on two-dimensional
congruence. For since direct comparison as to volume is impossible, we
are at liberty to define two volumes as equal, when all their various lines,
surfaces, angles and solid angles are congruent, since there remains, in
such a case, no measurable difference between the figures composing the
two volumes. Of course, as soon as we have established this one case of
equality of volumes, the rest of the theory follows; as appears from the
ordinary method of integrating volumes, by dividing them into small
cubes.

Thus congruence helps to establish three-dimensional equality, though it
cannot directly prove such equality; and the same philosophical principle,
of the homogeneity of space, by which congruence was proved, comes to
our rescue here. But how about right-handed and left-handed screws? Here
we can no longer apply the Identity of Indiscernibles, for the two are very
well discernible. But as with solids, so here, Free Mobility can help us
much. It can enable us, by ordinary measurement, to show that the internal
relations of both screws are the same, and that the difference lies only in
their relation to other things in space. Knowing these internal relations, we
can calculate, by the Geometry which Free Mobility has rendered possible,
all the geometrical properties of these screws—radius, pitch, etc.—and
can show them to be severally equal in both. But this is all we require.
Mediate comparison is possible, though immediate comparison is not.
Both can, for instance, be compared with the cylinder on which both would
fit, and thus their equality can be proved. A precisely similar proof holds,
of course, for the other cases, right and left hands, spherical triangles, etc.
On the whole, these cases confirm my argument; for they show, as Kant
intended them to show[158], the essential relativity of space.

151. (2) As regards time, no congruence is here conceivable, for to
effect congruence requires always—as we saw in the case of solids—one
more dimension than belongs to the magnitudes compared. No day can be
brought into temporal coincidence with any other day, to show that the two
exactly cover each other; we are therefore reduced to the arbitrary
assumption that some motion or set of motions, given us in experience, is



uniform. Fortunately, we have a large set of motions which all roughly
agree; the swing of the pendulum, the rotation and revolution of the earth
and the planets, etc. These do not exactly agree, but they lead us to the
laws of motion, by which we are able, on our arbitrary hypothesis, to
estimate their small departures from uniformity; just as the assumption of
Free Mobility enabled us to measure the departures of actual bodies from
rigidity. But here, as there, another possibility is mathematically open to
us, and can only be excluded by its philosophic absurdity; we might have
assumed that the above set of approximately agreeing motions all had
velocities which varied approximately as some arbitrarily assumed
function of the time, f(t) say, measured from some arbitrary origin. Such
an assumption would still keep them as nearly synchronous as before, and
would give an equally possible, though more complex, system of
Mechanics; instead of the first law of motion, we should have the
following: A particle perseveres in its state of rest, or of rectilinear motion
with velocity varying as f(t), except in so far as it is compelled to alter that
state by the action of external forces. Such a hypothesis is mathematically
possible, but, like the similar one for space, it is excluded logically by the
comparative nature of the judgment of quantity, and philosophically by the
fact that it involves absolute time, as a determining agent in change,
whereas time can never, philosophically, be anything but a passive form,
abstracted from change. I have introduced this parallel from time, not as
directly bearing on the argument, but as a simpler case which may serve to
illustrate my reasoning in the more complex case of space. For since time,
in mathematics, is one-dimensional, the mathematical difficulties are
simpler than in Geometry; and although nothing accurately corresponds to
congruence, there is a very similar mixture of mathematical and
philosophical necessity, giving, finally, a thoroughly definite axiom as the
basis of time-measurement, corresponding to congruence as the basis of
space-measurement[159].

152. (3) The case of time-measurement suggests the third of the above
objections to the absolute necessity of the axiom of Free Mobility. Psycho-
physics has shown that we have an approximate power, by means of what
may be called the sense of duration, of immediately estimating equal short
times. This establishes a rough measure independent of any assumed
uniform motion, and in space also, it may be said, we have a similar power



of immediate comparison. We can see, by immediate inspection, that the
sub-divisions on a foot rule are not grossly inaccurate; and so, it may be
said, we both have a measure independent of congruence, and also could
discover, by experience, any gross departure from Free Mobility. Against
this view, however, there is at the outset a very fundamental psychological
objection. It has been urged that all our comparison of spatial magnitudes
proceeds by ideal superposition. Thus James says (Psychology, Vol. II. p.
152): "Even where we only feel one sub-division to be vaguely larger or
less, the mind must pass rapidly between it and the other sub-division, and
receive the immediate sensible shock of the more," and "so far as the sub-
divisions of a sense-space are to be measured exactly against each other,
objective forms occupying one sub-division must be directly or indirectly
superposed upon the other[160]."

Even if we waive this fundamental objection, however, others remain.
To begin with, such judgments of equality are only very rough
approximations, and cannot be applied to lines of more than a certain
length, if only for the reason that such lines cannot well be seen together.
Thus this method can only give us any security in our own immediate
neighbourhood, and could in no wise warrant such operations as would be
required for the construction of maps &c., much less the measurement of
astronomical distances. They might just enable us to say that some lines
were longer than others, but they would leave Geometry in a position no
better than that of the Hedonical Calculus, in which we depend on a purely
subjective measure. So inaccurate, in fact, is such a method acknowledged
to be, that the foot-rule is as much a need of daily life as of science.
Besides, no one would trust such immediate judgments, but for the fact
that the stricter test of congruence to some extent confirms them; if we
could not apply this test, we should have no ground for trusting them even
as much as we do. Thus we should have, here, no real escape from our
absolute dependence upon the axiom of Free Mobility.

153. (4) One last elucidatory remark is necessary before our proof of
this axiom can be considered complete. We spoke above of the Geometry
on an egg, where Free Mobility does not hold. What, I may be asked, is
there about a thoroughly non-congruent Geometry, more impossible than
this Geometry on the egg? The answer is obvious. The Geometry of non-
congruent surfaces is only possible by the use of infinitesimals, and in the



infinitesimal all surfaces become plane. The fundamental formula, that for
the length of an infinitesimal arc, is only obtained on the assumption that
such an arc may be treated as a straight line, and that Euclidean Plane
Geometry may be applied in the immediate neighbourhood of any point. If
we had not our Euclidean measure, which could be moved without
distortion, we should have no method of comparing small arcs in different
places, and the Geometry of non-congruent surfaces would break down.
Thus the axiom of Free Mobility, as regards three-dimensional space, is
necessarily implied and presupposed in the Geometry of non-congruent
surfaces; the possibility of the latter, therefore, is a dependent and
derivative possibility, and can form no argument against the à priori
necessity of congruence as the test of equality.

154. It is to be observed that the axiom of Free Mobility, as I have
enunciated it, includes also the axiom to which Helmholtz gives the name
of Monodromy. This asserts that a body does not alter its dimensions in
consequence of a complete revolution through four right angles, but
occupies at the end the same position as at the beginning. The supposed
mathematical necessity of making a separate axiom of this property of
space has been disproved by Sophus Lie (v. Chap. I. § 45); philosophically,
it is plainly a particular case of Free Mobility[161], and indeed a
particularly obvious case, for a translation really does make some change
in a body, namely, a change in position, but a rotation through four right
angles may be supposed to have been performed any number of times
without appearing in the result, and the absurdity of ascribing to space the
power of making bodies grow in the process is palpable; everything that
was said above on congruence in general applies with even greater
evidence to this special case.

155. The axiom of Free Mobility involves, if it is to be true, the
homogeneity of space, or the complete relativity of position. For if any
shape, which is possible in one part of space, be always possible in
another, it follows that all parts of space are qualitatively similar, and
cannot, therefore, be distinguished by any intrinsic property. Hence
positions in space, if our axiom be true, must be wholly defined by
external relations, i.e. Position is not an intrinsic, but a purely relative,
property of things in space. If there could be such a thing as absolute
position, in short, metrical Geometry would be impossible. This relativity



of position is the fundamental postulate of all Geometry, to which each of
the necessary metrical axioms leads, and from which, conversely, each of
these axioms can be deduced.

156. This converse deduction, as regards Free Mobility, is not very
difficult, and follows from the argument of Section A[162], which I will
briefly recapitulate. In the first place, externality is an essentially relative
conception—nothing can be external to itself. To be external to something
is to be an other with some relation to that thing. Hence, when we abstract
a form of externality from all material content, and study it in isolation,
position will appear of necessity as purely relative—it can have no
intrinsic quality, for our form consists of pure externality, and externality
contains no shadow or trace of an intrinsic quality. Hence we derive our
fundamental postulate, the relativity of position. From this follows the
homogeneity of our form, for any quality in one position, which marked
out that position from another, would be necessarily more or less intrinsic,
and would contradict the pure relativity. Finally Free Mobility follows
from homogeneity, for our form would not be homogeneous unless it
allowed, in every part, shapes or systems of relations, which it allowed in
any other part. Free Mobility, therefore, is a necessary property of every
possible form of externality.

157. In summing up the argument we have just concluded, we may
exhibit it, in consequence of the two preceding paragraphs, in the form of
a completed circle. Starting from the conditions of spatial measurement,
we found that the comparison, required for measurement, could only be
effected by superposition. But we found, further, that the result of such
comparison will only be unambiguous, if spatial magnitudes and shapes
are unaltered by motion in space, if, in other words, shapes do not depend
upon absolute position in space. But this axiom can only be true if space is
homogeneous and position merely relative. Conversely, if position is
assumed to be merely relative, a change of magnitude in motion—
involving as it does, the assertion of absolute position—is impossible, and
our test of spatial equality is therefore adequate. But position in any form
of externality must be purely relative, since externality cannot be an
intrinsic property of anything. Our axiom, therefore, is à priori in a double
sense. It is presupposed in all spatial measurement, and it is a necessary



property of any form of externality. A similar double apriority, we shall
see, appears in our other necessary axioms.

II. The Axiom of Dimensions[163].

158. We have seen, in discussing the axiom of Free Mobility, that all
position is relative, that is, a position exists only by virtue of relations[164].
It follows that, if positions can be defined at all, they must be uniquely and
exhaustively defined by some finite number of such relations. If Geometry
is to be possible, it must happen that, after enough relations have been
given to determine a point uniquely, its relations to any fresh known point
are deducible from the relations already given. Hence we obtain, as an à
priori condition of Geometry, logically indispensable to its existence, the
axiom that Space must have a finite integral number of Dimensions. For
every relation required in the definition of a point constitutes a dimension,
and a fraction of a relation is meaningless. The number of relations
required must be finite, since an infinite number of dimensions would be
practically impossible to determine. If we remember our axiom of Free
Mobility, and remember also that space is a continuum, we may state our
axiom, for metrical Geometry, in the form given by Helmholtz (v. Chap. I.
§ 25): "In a space of n dimensions, the position of every point is uniquely
determined by the measurement of n continuous independent variables
(coordinates).[165]"

159. So much, then, is à priori necessary to metrical Geometry. The
restriction of the dimensions to three seems, on the contrary, to be wholly
the work of experience[166]. This restriction cannot be logically necessary,
for as soon as we have formulated any analytical system, it appears wholly
arbitrary. Why, we are driven to ask, cannot we add a fourth coordinate to
our x, y, z, or give a geometrical meaning to x4? In this more special form,
we are tempted to regard the axiom of dimensions, like the number of
inhabitants of a town, as a purely statistical fact, with no greater necessity
than such facts have.

Geometry affords intrinsic evidence of the truth of my division of the
axiom of dimensions into an à priori and empirical portion. For while the
extension of the number of dimensions to four, or to n, alters nothing in
plane and solid Geometry, but only adds a new branch which interferes in



no way with the old, some definite number of dimensions is assumed in all
Geometries, nor is it possible to conceive of a Geometry which should be
free from this assumption[167].

160. Let us, since the point seems of some interest, repeat our proof of
the apriority of this axiom from a slightly different point of view. We will
begin, this time, from the most abstract conception of space, such as we
find in Riemann's dissertation, or in Erdmann's extents. We have here, an
ordered manifold, infinitely divisible and allowing of Free Mobility[168].
Free Mobility involves, as we saw, the power of passing continuously from
any one point to any other, by any course which may seem pleasant to us;
it involves, also, that, in such a course, no changes occur except changes of
mere position, i.e., positions do not differ from one another in any
qualitative way. (This absence of qualitative difference is the
distinguishing mark of space as opposed to other manifolds, such as the
colour- and tone-systems: in these, every element has a definite qualitative
sensational value, whereas in space, the sensational value of a position
depends wholly on its spatial relation to our own body, and is thus not
intrinsic, but relative.) From the absence of qualitative differences among
positions, it follows logically that positions exist only by virtue of other
positions; one position differs from another just because they are two, not
because of anything intrinsic in either. Position is thus defined simply and
solely by relation to other positions. Any position, therefore, is completely
defined when, and only when, enough such relations have been given to
enable us to determine its relation to any new position, this new position
being defined by the same number of relations. Now, in order that such
definition may be at all possible, a finite number of relations must suffice.
But every such relation constitutes a dimension. Therefore, if Geometry is
to be possible, it is à priori necessary that space should have a finite
integral number of dimensions.

161. The limitation of the dimensions to three is, as we have seen,
empirical; nevertheless, it is not liable to the inaccuracy and uncertainty
which usually belong to empirical knowledge. For the alternatives which
logic leaves to sense are discrete—if the dimensions are not three, they
must be two or four or some other number—so that small errors are out of
the question[169]. Hence the final certainty of the axiom of three
dimensions, though in part due to experience, is of quite a different order



from that of (say) the law of Gravitation. In the latter, a small inaccuracy
might exist and remain undetected; in the former, an error would have to
be so considerable as to be utterly impossible to overlook. It follows that
the certainty of our whole axiom, that the number of dimensions is three,
is almost as great as that of the à priori element, since this element leaves
to sense a definite disjunction of discrete possibilities.

III. The Axiom of Distance.

162. We have already seen, in discussing projective Geometry, that two
points must determine a unique curve, the straight line. In metrical
Geometry, the corresponding axiom is, that two points must determine a
unique spatial quantity, distance. I propose to prove, in what follows, (1)
that if distance, as a quantity completely determined by two points, did not
exist, spatial magnitude would not be measurable; (2) that distance can
only be determined by two points, if there is an actual curve in space
determined by those two points; (3) that the existence of such a curve can
be deduced from the conception of a form of externality, and (4) that the
application of quantity to such a curve necessarily leads to a certain
magnitude, namely distance, uniquely determined by any two points which
determine the curve. The conclusion will be, if these propositions can be
successfully maintained, that the axiom of distance is à priori in the same
double sense as the axiom of Free Mobility, i.e. it is presupposed in the
possibility of measurement, and it is necessarily true of any possible form
of externality.

163. (1) The possibility of spatial measurement allows us to infer the
existence of a magnitude uniquely determined by any two points. The
proof of this depends on the axiom of Free Mobility, or its equivalent, the
homogeneity of space. We have seen that these are involved in the
possibility of spatial measurement; we may employ them, therefore, in
any argument as to the conditions of this possibility.

Now to begin with, two points must, if Geometry is to be possible, have
some relation to each other, for we have seen that such relations alone
constitute position or localization. But if two points have a relation to each
other, this must be an intrinsic relation. For it follows, from the axiom of
Free Mobility, that two points, forming a figure congruent with the given



pair, can be constructed in any part of space. If this were not possible, we
have seen that metrical Geometry could not exist. But both the figures
may be regarded as composed of two points and their relation; if the two
figures are congruent, therefore, it follows that the relation is
quantitatively the same for both figures, since congruence is the test of
spatial equality. Hence the two points have a quantitative relation, which is
such that they can traverse all space in a combined motion without in any
way altering that relation. But in such a general motion, any external
relation of the two points, any relation involving other points or figures in
space, must be altered[170]. Hence the relation between the two points,
being unaltered, must be an intrinsic relation, a relation involving no other
point or figure in space; and this intrinsic relation we call distance[171].

164. It might be objected, to the above argument, that it involves a
petitio principii. For it has been assumed that the two points and their
relation form a figure, to which other figures can be congruent. Now if two
points have no intrinsic relation, it would seem that they cannot form such
a figure. The argument, therefore, apparently assumes what it had to
prove. Why, it may be asked, should not three points be required, before
we obtain any relation, which Free Mobility allows us to construct afresh
in other parts of space?

The answer to this, as to the corresponding question in the first section
of this chapter, lies, I think, in the passivity of space, or the mutual
independence of its parts. For it follows, from this independence, that any
figure, or any assemblage of points, may be discussed without reference to
other figures or points. This principle is the basis of infinite divisibility, of
the use of quantity in Geometry, and of all possibility of isolating
particular figures for discussion. It follows that two points cannot be
dependent, as to their relation, on any other points or figures, for if they
were so dependent, we should have to suppose some action of such points
or figures on the two points considered, which would contradict the mutual
independence of different positions. To illustrate by an example: the
relation of two given points does not depend on the other points of the
straight line on which the given points lie. For only through their relation,
i.e. through the straight line which they determine, can the other points of
the straight line be known to have any peculiar connection with the given
pair.



165. But why, it may be asked, should there be only one such relation
between two points? Why not several? The answer to this lies in the fact
that points are wholly constituted by relations, and have no intrinsic nature
of their own[172]. A point is defined by its relations to other points, and
when once the relations necessary for definition have been given, no fresh
relations to the points used in definition are possible, since the point
defined has no qualities from which such relations could flow. Now one
relation to any one other point is as good for definition as more would be,
since however many we had, they would all remain unaltered in a
combined motion of both points. Hence there can only be one relation
determined by any two points.

166. (2) We have thus established our first proposition—two points have
one and only one relation uniquely determined by those two points. This
relation we call their distance apart. It remains to consider the conditions
of the measurement of distance, i.e., how far a unique value for distance
involves a curve uniquely determined by the two points.

In the first place, some curve joining the two points is involved in the
above notion of a combined motion of the two points, or of two other
points forming a figure congruent with the first two. For without some
such curve, the two point-pairs cannot be known as congruent, nor can we
have any test by which to discover when a point-pair is moving as a single
figure[173]. Distance must be measured, therefore, by some line which
joins the two points. But need this be a line which the two points
completely determine?

167. We are accustomed to the definition of the straight line as the
shortest distance between two points, which implies that distance might
equally well be measured by curved lines. This implication I believe to be
false, for the following reasons. When we speak of the length of a curve,
we can give a meaning to our words only by supposing the curve divided
into infinitesimal rectilinear arcs, whose sum gives the length of an
equivalent straight line; thus unless we presuppose the straight line, we
have no means of comparing the lengths of different curves, and can
therefore never discover the applicability of our definition. It might be
thought, perhaps, that some other line, say a circle, might be used as the
basis of measurement. But in order to estimate in this way the length of



any curve other than a circle, we should have to divide the curve into
infinitesimal circular arcs. Now two successive points do not determine a
circle, so that an arc of two points would have an indeterminate length. It
is true that, if we exclude infinitesimal radii for the measuring circles, the
lengths of the infinitesimal arcs would be determinate, even if the circles
varied, but that is only because all the small circular arcs through two
consecutive points coincide with the straight line through those two points.
Thus, even with the help of the arbitrary restriction to a finite radius, all
that happens is that we are brought back to the straight line. If, to mend
matters, we take three consecutive points of our curve, and reckon distance
by the arc of the circle of curvature, the notion of distance loses its
fundamental property of being a relation between two points. For two
consecutive points of the arc could not then be said to have any
corresponding distance apart—three points would be necessary before the
notion of distance became applicable. Thus the circle is not a possible
basis for measurement, and similar objections apply, of course, with
increased force, to any other curve. All this argument is designed to show,
in detail, the logical impossibility of measuring distance by any curve not
completely defined by the two points whose distance apart is required. If
in the above we had taken distance as measured by circles of given radius,
we should have introduced into its definition a relation to other points
besides the two whose distance was to be measured, which we saw to be a
logical fallacy. Moreover, how are we to know that all the circles have
equal radii, until we have an independent measure of distance?

168. A straight line, then, is not the shortest distance, but is simply the
distance between two points—so far, this conclusion has stood firm. But
suppose we had two or more curves through two points, and that all these
curves were congruent inter se. We should then say, in accordance with the
definition of spatial equality, that the lengths of all these curves were
equal. Now it might happen that, although no one of the curves was
uniquely determined by the two end-points, yet the common length of all
the curves was so determined. In this case, what would hinder us from
calling this common length the distance apart, although no unique figure
in space corresponded to it? This is the case contemplated by spherical
Geometry, where, as on a sphere, antipodes can be joined by an infinite
number of geodesics, all of which are of equal length. The difficulty



supposed is, therefore, not a purely imaginary one, but one which modern
Geometry forces us to face. I shall consequently discuss it at some length.

169. To begin with, I must point out that my axiom is not quite
equivalent to Euclid's. Euclid's axiom states that two straight lines cannot
enclose a space, i.e., cannot have more than one common point. Now if
every two points, without exception, determine a unique straight line, it
follows, of course, that two different straight lines can have only one point
in common—so far, the two axioms are equivalent. But it may happen, as
in spherical space, that two points in general determine a unique straight
line, but fail to do so when they have to each other the special relation of
being antipodes. In such a system every pair of straight lines in the same
plane meet in two points, which are each other's antipodes; but two points,
in general, still determine a unique straight line. We are still able,
therefore, to obtain distances from unique straight lines, except in limiting
cases; and in such cases, we can take any point intermediate between the
two antipodes, join it by the same straight line to both antipodes, and
measure its distance from those antipodes in the usual way. The sum of
these distances then gives a unique value for the distance between the
antipodes.

Thus even in spherical space, we are greatly assisted by the axiom of the
straight line; all linear measurement is effected by it, and exceptional
cases can be treated, through its help, by the usual methods for limits.
Spherical space, therefore, is not so adverse as it at first appeared to be to
the à priori necessity of the axiom. Nevertheless we have, so far, not
attacked the kernel of the objection which spherical space suggested. To
this attack it is now our duty to proceed.

170. It will be remembered that, in our à priori proof that two points
must have one definite relation, we held it impossible for those two points
to have, to the rest of space, any relation which would be unaltered by
motion. Now in spherical space, in the particular case where the two points
are antipodes, they have a relation, unaltered by motion, to the rest of
space—the relation, namely, that their distance is half the circumference
of the universe. In our former discussion, we assumed that any relation to
outside space must be a relation of position—and a relation of position
must be altered by motion. But with a finite space, in which we have
absolute magnitude, another relation becomes possible, namely, a relation



of magnitude. Antipodal points, accordingly, like coincident points, no
longer determine a unique straight line. And it is instructive to observe
that there is, in consequence, an ambiguity in the expression for distance,
like the ordinary ambiguity in angular measurement. If 1/k2 be the space
constant, and d be one value for the distance between two points, 2πkn ± d,
where n is any integer, is an equally good value. Distance is, in short, a
periodic function like angle. Thus such a state of things rather confirms
than destroys my contention, that distance depends on a curve uniquely
determined by two points. For as soon as we drop this unique
determination, we see ambiguities creeping into our expression for
distance. Distance still has a set of discrete values, corresponding to the
fact that, given one point, the straight line is uniquely determined for all
other points but one, the antipodal point. It is tempting to go on, and say:
If through every pair of points there were an infinite number of the curves
used in measuring distance, distance would be able, for the same pair of
points, to take, not only a discrete series, but an infinite continuous series
of values.

171. This, however, is mere speculation. I come now to the pièce de
résistance of my argument. The ambiguity in spherical space arose, as we
saw, from a relation of magnitude to the rest of space—such a relation
being unaltered by a motion of the two points, and therefore falling
outside our introductory reasoning. But what is this relation of magnitude?
Simply a relation of the distance between the two points to a distance
given in the nature of the space in question. It follows that such a relation
presupposes a measure of distance, and need not, therefore, be
contemplated in any argument which deals with the à priori requisites for
the possibility of definite distances[174].

172. I have now shown, I hope conclusively, that spherical space affords
no objection to the apriority of my axiom. Any two points have one
relation, their distance, which is independent of the rest of space, and this
relation requires, as its measure, a curve uniquely determined by those two
points. I might have taken the bull by the horns, and said: Two points can
have no relation but what is given by lines which join them, and therefore,
if they have a relation independent of the rest of space, there must be one
line joining them which they completely determine. Thus James says[175]:



"Just as, in the field of quantity, the relation between two numbers is
another number, so in the field of space the relations are facts of the same
order with the facts they relate.... When we speak of the relation of
direction of two points towards each other, we mean simply the sensation
of the line that joins the two points together. The line is the relation.... The
relation of position between the top and bottom points of a vertical line is
that line, and nothing else."

If I had been willing to use this doctrine at the beginning, I might have
avoided all discussion. A unique relation between two points must in this
case, involve a unique line between them. But it seemed better to avoid a
doctrine not universally accepted, the more so as I was approaching the
question from the logical, not the psychological, side. After disposing of
the objections, however, it is interesting to find this confirmation of the
above theory from so different a standpoint. Indeed, I believe James's
doctrine could be proved to be a logical necessity, as well as a
psychological fact. For what sort of thing can a spatial relation between
two distinct points be? It must be something spatial, and it must, since
points are wholly constituted by their relations, be something at least as
real and tangible as the points it relates. There seems nothing which can
satisfy these requirements, except a line joining them. Hence, once more, a
unique relation must involve a unique line. That is, linear magnitude is
logically impossible, unless space allows of curves uniquely determined
by any two of their points.

173. (3) But farther, the existence of curves uniquely determined by two
points can be deduced from the nature of any form of externality[176]. For
we saw, in discussing Free Mobility, that this axiom, together with
homogeneity and the relativity of position, can be so deduced, and we saw
in the beginning of our discussion on distance, that the existence of a
unique relation between two points could be deduced from the
homogeneity of space. Since position is relative, we may say, any two
points must have some relation to each other: since our form of externality
is homogeneous, this relation can be kept unchanged while the two points
move in the form, i.e., change their relations to other points; hence their
relation to each other is an intrinsic relation, independent of their relations
to other points. But since our form is merely a complex of relations, a
relation of externality must appear in the form, with the same evidence as



anything else in the form; thus if the form be intuitive or sensational, the
relation must be immediately presented, and not a mere inference. Hence
the intrinsic relation between two points must be a unique figure in our
form, i.e. in spatial terms, the straight line joining the two points.

174. (4) Finally, we have to prove that the existence of such a curve
necessarily leads, when quantity is applied to the relation between two
points, to a unique magnitude, which those two points completely
determine. With this, we shall be brought back to distance, from which we
started, and shall complete the circle of our argument.

We saw, in section A § 119, that the figure formed by two points is
projectively indistinguishable from that formed by any two other points in
the same straight line; the figure, in both cases, is, from the projective
standpoint, simply the straight line on which the two points lie. The
difference of relation, in the two cases, is not qualitative, since projective
Geometry cannot deal with it; nevertheless, there is some difference of
relation. For instance, if one point be kept fixed, while the other moves,
there is obviously some change of relation. This change, since all parts of
the straight line are qualitatively alike, must be a change of quantity. If
two points, therefore, determine a unique figure, there must exist, for the
distinction between the various other points of this figure, a unique
quantitative relation between the two determining points, and therefore,
since these points are arbitrary, between only two points. This relation is
distance, with which our argument began, and to which it at least returns.

175. To sum up: If points are defined simply by relations to other points,
i.e., if all position is relative, every point must have to every other point
one, and only one, relation independent of the rest of space. This relation
is the distance between the two points. Now a relation between two points
can only be defined by a line joining them—nay further, it may be
contended that a relation can only be a line joining them. Hence a unique
relation involves a unique line, i.e., a line determined by any two of its
points. Only in a space which admits of such a line is linear magnitude a
logically possible conception. But when once we have established the
possibility, in general, of drawing such lines, and therefore of measuring
linear magnitudes, we may find that a certain magnitude has a peculiar
relation to the constitution of space. The straight line may turn out to be of
finite length, and in this case its length will give a certain peculiar



magnitude, the space-constant. Two antipodal points, that is, points which
bisect the entire straight line, will then have a relation of magnitude
which, though unaltered by motion, is rendered peculiar by a certain
constant relation to the rest of space. This peculiarity presupposes a
measure of linear magnitude in general, and cannot, therefore, upset the
apriority of the axiom of the straight line. But it destroys, for points
having the peculiar antipodal relation to each other, the argument which
proved that the relation between two points could not, since it was
unchanged by motion, have reference to the rest of space. Thus it is
intelligible that, for such special points, the axiom breaks down, and an
infinite number of straight lines are possible between them; but unless we
had started with assuming the general validity of the axiom, we could
never have reached a position in which antipodal points could have been
known to be peculiar, or, indeed, a position which would have enabled us
to give any quantitative definition whatever of particular points.

Distance and the straight line, as relations uniquely determined by two
points, are thus à priori necessary to metrical Geometry. But further, they
are properties which must belong to any form of externality. Since their
necessity for Geometry was deduced from homogeneity and the relativity
of position, and since these are necessary properties of any form of
externality, the same argument proves both conclusions. We thus obtain, as
in the case of Free Mobility, a double apriority: The axiom of Distance,
and its implication, the axiom of the Straight Line, are, on the one hand,
presupposed in the possibility of spatial magnitude, and cannot, therefore,
be contradicted by any experience resulting from the measurement of
space; while they are consequences, on the other hand, of the necessary
properties of any form of externality which is to render possible
experience of an external world.

176. In connection with the straight line, it will be convenient to discuss
the conditions of a metrical coordinate system. The projective coordinate
system, as we have seen, aims only at a convenient nomenclature for
different points, and can be set up without introducing the notion of spatial
quantity. But a metrical coordinate system does much more than this. It
defines every point quantitatively, by its quantitative spatial relations to a
certain coordinate figure. Only when the system of coordinates is thus
metrical, i.e., when every coordinate represents some spatial magnitude,



which is itself a relation of the point defined to some other point or figure
—can operations with coordinates lead to a metrical result. When, as in
projective Geometry, the coordinates are not spatial magnitudes, no
amount of transformation can give a metrical result. I wish to prove, here,
that a metrical coordinate system necessarily involves the straight line,
and cannot, without a logical fallacy, be set up on any other basis. The
projective system of coordinates, as we saw, is entirely based on the
straight line; but the metrical system is more important, since its
quantities embody actual information as to spatial magnitudes, which, in
projective Geometry, is not the case.

In the first place, a point's metrical coordinates constitute a complete
quantitative definition of it; now a point can only be defined, as we have
seen, by its relations to other points, and these relations can only be
defined by means of the straight line. Consequently, any metrical system
of coordinates must involve the straight line, as the basis of its definitions
of points.

This à priori argument, however, though I believe it to be quite sound,
is not likely to carry conviction to any one persuaded of the opposite. Let
us, therefore, examine metrical coordinate systems in detail, and show, in
each case, their dependence on the straight line.

We have already seen that the notion of distance is impossible without
the straight line. We cannot, therefore, define our coordinates in any of the
ordinary ways, as the distances from three planes, lines, points, spheres, or
what not. Polar coordinates are impossible, since,—waiving the
straightness of the radius vector—the length of the radius vector becomes
unmeaning. Triangular coordinates involve not only angles, which must in
the limit be rectilinear, but straight lines, or at any rate some well-defined
curves. Now curves can only be metrically defined in two ways: Either by
relation to the straight line, as, e.g., by the curvature at any point, or by
purely analytical equations, which presuppose an intelligible system of
metrical coordinates. What methods remain for assigning these arbitrary
values to different points? Nay, how are we to get any estimate of the
difference—to avoid the more special notion of distance—between two
points? The very notion of a point has become illusory. When we have a
coordinate system, we may define a point by its three coordinates; in the
absence of such a system, we may define the notion of point in general as



the intersection of three surfaces or of two curves. Here we take surfaces
and curves as notions which intuition makes plain, but if we wish them to
give us a precise numerical definition of particular points, we must
specify the kind of surface or curve to be used. Now this, as we have seen,
is only possible when we presuppose either the straight line, or a
coordinate system. It follows that every coordinate system presupposes the
straight line, and is logically impossible without it.

177. The above three axioms, we have seen, are à priori necessary to
metrical Geometry. No others can be necessary, since metrical systems,
logically as unassailable as Euclid's, and dealing with spaces equally
homogeneous and equally relational, have been constructed by the
metageometers, without the help of any other axioms. The remaining
axioms of Euclidean Geometry—the axiom of parallels, the axiom that the
number of dimensions is three, and Euclid's form of the axiom of the
straight line (two straight lines cannot enclose a space)—are not essential
to the possibility of metrical Geometry, i.e., are not deducible from the
fact that a science of spatial magnitudes is possible. They are rather to be
regarded as empirical laws, obtained, like the empirical laws of other
sciences, by actual investigation of the given subject-matter—in this
instance, experienced space.

178. In summing up the distinctive argument of this Section, we may
give it a more general form, and discuss the conditions of measurement in
any continuous manifold, i.e., the qualities necessary to the manifold, in
order that quantities in it may be determinable, not only as to the more or
less, but as to the precise how much.

Measurement, we may say, is the application of number to continua, or,
if we prefer it, the transformation of mere quantity into number of units.
Using quantity to denote the vague more or less, and magnitude to denote
the precise number of units, the problem of measurement may be defined
as the transformation of quantity into magnitude.

Now a number, to begin with, is a whole consisting of smaller units, all
of these units being qualitatively alike. In order, therefore, that a
continuous quantity may be expressible as a number, it must, on the one
hand, be itself a whole, and must, on the other hand, be divisible into
qualitatively similar parts. In the aspect of a whole, the quantity is



intensive; in the aspect of an aggregate of parts, it is extensive. A purely
intensive quantity, therefore, is not numerable—a purely extensive
quantity, if any such could be imagined, would not be a single quantity at
all, since it would have to consist of wholly unsynthesized particulars. A
measurable quantity, therefore, is a whole divisible into similar parts. But
a continuous quantity, if divisible at all, must be infinitely divisible. For
otherwise the points at which it could be divided would form natural
barriers, and so destroy its continuity. But further, it is not sufficient that
there should be a possibility of division into mutually external parts; while
the parts, to be perceptible as parts, must be mutually external, they must
also, to be knowable as equal parts, be capable of overcoming their mutual
externality. For this, as we have seen, we require superposition, which
involves Free Mobility and homogeneity—the absence of Free Mobility in
time, where all other requisites of measurement are fulfilled, renders
direct measurement of time impossible. Hence infinite divisibility, free
mobility, and homogeneity are necessary for the possibility of
measurement in any continuous manifold, and these, as we have seen, are
equivalent to our three axioms. These axioms are necessary, therefore, not
only for spatial measurement, but for all measurement. The only manifold
given in experience, in which these conditions are satisfied, is space. All
other exact measurement—as could be proved, I believe, for every
separate case—is effected, as we saw in the case of time, by reduction to a
spatial correlative. This explains the paramount importance, to exact
science, of the mechanical view of nature, which reduces all phenomena to
motions in time and space. For number is, of all conceptions, the easiest to
operate with, and science seeks everywhere for an opportunity to apply it,
but finds this opportunity only by means of spatial equivalents to
phenomena[177].

179. We have now seen in what the à priori element of Geometry
consists. This à priori element may be defined as the axioms common to
Euclidean and non-Euclidean spaces, as the axioms deducible from the
conception of a form of externality, or—in metrical Geometry—as the
axioms required for the possibility of measurement. It remains to discuss,
in a final chapter, some questions of a more general philosophic nature, in
which we shall have to desert the firm ground of mathematics and enter on
speculations which I put forward very tentatively, and with little faith in



their ultimate validity. The chief questions for this final chapter will be
two: (1) How is such à priori and purely logical necessity possible, as
applied to an actually given subject-matter like space? (2) How can we
remove the contradictions which have haunted us in this chapter, arising
out of the relativity, infinite divisibility, and unbounded extension of
space? These two questions are forced upon us by the present chapter, but
as they open some of the fundamental problems of philosophy, it would be
rash to expect a conclusive or wholly satisfactory answer. A few hints and
suggestions may be hoped for, but a complete solution could only be
obtained from a complete philosophy, of which the prospects are far too
slender to encourage a confident frame of mind.



FOOTNOTES:
[116] See infra, Axiom of Distance, in Sec. B. of this Chapter.

[117] Thus on a cylinder, two geodesics, e.g. a generator and a helix, may have any number of
intersections—a very important difference from the plane.

[118] Cf. Cremona, Projective Geometry (Clarendon Press, 2nd ed. 1893) p. 50: "Most of the
propositions in Euclid's Elements are metrical, and it is not easy to find among them an example
of a purely descriptive theorem."

[119] Op. cit. p. 226.

[120] Some ground for this choice will appear when we come to metrical Geometry.

[121] The straight line σa denotes the straight line common to the planes σ and a, the point σa
denotes the point common to the plane σ and the straight line a, and similarly for the rest of the
notation.

[122] Cremona (op. cit. Chap. IX. p. 50) defines anharmonic ratio as a metrical property which is
unaltered by projection. This, however, destroys the logical independence of projective
Geometry, which can only be maintained by a purely descriptive definition.

[123] There is no corresponding property of three points on a line, because they can be
projectively transformed into any other three points on the same line. See § 120.

[124] Due to v. Staudt's "Geometrie der Lage."

[125] See Cremona, op. cit. Chapter VIII.

[126] The corresponding definitions, for the two-dimensional manifold of lines through a point,
follow by the principle of duality.

[127] It is important to observe that this definition of the Point introduces metrical ideas. Without
metrical ideas, we saw, nothing appears to give the Point precedence of the straight line, or
indeed to distinguish it conceptually from the straight line. A reference to quantity is therefore
inevitable in defining the Point, if the definition is to be geometrical. A non-metrical definition
would have to be also non-geometrical. See Chap. IV. §§ 196–199.

[128] §§ 163–175.

[129] On this axiom, however, compare § 131.

[130] For the proof of this proposition, see Chap. III. Sec. B, Axiom of Dimensions.

[131] The straight line and plane, in all discussions of general Geometry, are not necessarily
Euclidean. They are simply figures determined, in general, by two and by three points
respectively; whether they conform to the axiom of parallels and to Euclid's form of the axiom of
the straight line, is not to be considered in the general definition.

[132] That projective Geometry must have existential import, I shall attempt to prove in Chapter
IV.

[133] Logic, Book I. Chapter II.



[134] Cf. Bradley's Logic, p. 63. It will be seen that the sense in which I have spoken of space as
a principle of differentiation is not the sense of a "principle of individuation" which Bradley
objects to.

[135] Chap. IV. §§ 186–191.

[136] Chap. IV. § 201 ff.

[137] It is important to observe, however, that this way of regarding spatial relations is metrical;
from the projective standpoint, the relation between two points is the whole unbounded straight
line on which they lie, and need not be regarded as divisible into parts or as built up of points.

[138] §§ 207, 208. Cf. Hegel, Naturphilosophie, § 254.

[139] See Chap. IV. §§ 196–199.

[140] See a forthcoming article on "The relations of number and quantity" by the present writer
in Mind, July, 1897.

[141] Logic, Vol. II. Chap. VII. p. 211.

[142] Real, as opposed to logical, diversity is throughout intended. Diverse aspects may coexist
in a thing at one time and place, but two diverse real things cannot so coexist.

[143] On the insufficiency of time alone, see Chapter IV. § 191.

[144] Geometrically, the axiom of the plane is, not that three points determine a figure at all,
which follows from the axiom of the straight line, but that the straight line joining two casual
points of the plane lies wholly in the plane. This axiom requires a projective method of
constructing the plane, i.e. of finding all the triads of points which determine the same projective
figure as the given triad. The required construction will be obtained if we can find any projective
figure determined by three points, and any projective method of reaching other points which
determine the same figure.

Let O, P, Q be the three points whose projective relation is required. Then we have given us the
three straight lines PQ, QO, OP. Metrically, the relation between these points is made up of the



area, and the magnitude of the sides and angles, of the triangle OPQ, just as the relation between
two points is distance. But projectively, the figure is unchanged when P and Q travel along OP
and OQ, or when OP and OQ turn about O in such a way as still to meet PQ. This is a result of
the general principle of projective equivalence enunciated above (§§ 108, 109). Hence the
projective relation between O, P, Q is the same as that between O, p, q or O, P′, Q′; that is, p, q
and P′, Q′ lie in the plane OPQ. In this way, any number of points on the plane may be obtained,
and by repeating the construction with fresh triads, every point of the plane can be reached. We
have to prove that, when the plane is so constructed, the straight line joining any two points of
the plane lies wholly in the plane.

It is evident, from the manner of construction, that any point of PQ, OP, OQ, OP′ or OQ′ lies in
the plane. If we can prove that any point of pq lies in the plane, we shall have proved all that is
required, since pq may be transformed, by successive repetitions of the same construction, into
any straight line joining two points of the plane. But we have seen that the same plane is
determined by O, p, q and by O, P, Q. The straight lines PQ, pq have, therefore, the same
relation to the plane. But PQ lies wholly in the plane; therefore pq also lies wholly in the plane.
Hence our axiom is proved.

[145] A detailed proof has been given above, Chap. I. 3rd period. It is to be observed that any
reference to infinitely distant elements involves metrical ideas.

[146] Cf. Section A, §§ 115–117.

[147] Contrast Erdmann, op. cit. p. 138.

[148] Cf. Erdmann, op. cit. p. 164.

[149] Strictly speaking, this method is only applicable where the two magnitudes are
commensurable. But if we take infinite divisibility rigidly, the units can theoretically be taken so
small as to obtain any required degree of approximation. The difficulty is the universal one of
applying to continua the essentially discrete conception of number.

[150] Cf. Erdmann, op. cit. p. 50.

[151] Also called the axiom of congruence. I have taken congruence to be the definition of
spatial equality by superposition, and shall therefore generally speak of the axiom as Free
Mobility.

[152] For the sense in which these figures are to be regarded as material, see criticism of
Helmholtz, Chapter II. §§ 69 ff.

[153] Op. cit. p. 60.

[154] The view of Helmholtz and Erdmann, that mechanical experience suffices here, though
geometrical experience fails us, has been discussed above, Chapter II. §§ 73, 82.

[155] Chapter II. § 81.

[156] Chapter II. § 72.

[157] Contrast Delbœuf, L'ancienne et les nouvelles géométries, II. Rev. Phil. 1894, Vol. xxxvii.
p. 354.

[158] Prolegomena, § 13. See Vaihinger's Commentar, II. pp. 518–532 esp. pp. 521–2. The
above was Kant's whole purpose in 1768, but only part of his purpose in the Prolegomena,
where the intuitive nature of space was also to be proved.



[159] On the subject of time measurement, cf. Bosanquet's Logic, Vol. i. pp. 178–183. Since
time, in the above account, is measured by motion, its measurement presupposes that of spatial
magnitudes.

[160] Cf. Stumpf. Ursprung der Raumvorstellung, p. 68.

[161] As is Helmholtz's other axiom, that the possibility of superposition is independent of the
course pursued in bringing it about.

[162] Cf. §§ 129, 130.

[163] This deduction is practically the same as that in Sec. A, but I have stated it here with more
special reference to space and to metrical Geometry.

[164] The question: "Relations to what?" is a question involving many difficulties. It will be
touched on later in this chapter, and answered, as far as possible, in the fourth chapter. For the
present, in spite of the glaring circle involved, I shall take the relations as relations to other
positions.

[165] Wiss. Abh. Vol. II. p. 614.

[166] Cp. Grassmann, Ausdehnungslehre von 1844, 2nd ed. p. XXIII.

[167] Delbœuf, it is true, speaks of Geometries with m/n dimensions, but gives no reference
(Rev. Phil. T. xxxvi. p. 450).

[168] In criticizing Erdmann, it will be remembered, we saw that Free Mobility is a necessary
property of his extents, though he does not regard it as such.

[169] Cf. Riemann, Hypothesen welche der Geometrie zu Grunde liegen, Gesammelte Werke, p.
266; also Erdmann, op. cit. p. 154.

[170] This is subject, in spherical space, to the modification pointed out below, in dealing with
the exception to the axiom of the straight line. See §§ 168–171.

[171] In speaking of distance at once as a quantity and as an intrinsic relation, I am anxious to
guard against an apparent inconsistency. I have spoken of the judgment of quantity, throughout,
as one of comparison; how, then, can a quantity be intrinsic? The reply is that, although
measurement and the judgment of quantity express the result of comparison, yet the terms
compared must exist before the comparison; in this case, the terms compared in measuring
distances, i.e. in comparing them inter se, are intrinsic relations between points. Thus, although
the measurement of distance involves a reference to other distances, and its expression as a
magnitude requires such a reference, yet its existence does not depend on any external reference,
but exclusively on the two points whose distance it is.

[172] See the end of the argument on Free Mobility, § 155 ff.

[173] In Frischauf's "Absolute Geometrie nach Johann Bolyai," Anhang, there is a series of
definitions, starting from the sphere, as the locus of congruent point-pairs when one point of the
pair is fixed, and hence obtaining the circle and the straight line. From the above it follows, that
the sphere so defined already involves a curve between the points of the point-pair, by which
various point-pairs can be known as congruent; and it will appear, as we proceed, that this curve
must be a straight line. Frischauf's definition by means of the sphere involves, therefore, a
vicious circle, since the sphere presupposes the straight line, as the test of congruent point-pairs.



[174] Nor in any argument which, like those of projective Geometry, avoids the notion of
magnitude or distance altogether. It follows that the propositions of projective Geometry apply,
without reserve, to spherical space, since the exception to the axiom of the straight line arises
only on metrical ground.

[175] Psychology, Vol. II. pp. 149–150.

[176] This step in the argument has been put very briefly, since it is a mere repetition of the
corresponding argument in Section A, and is inserted here only for the sake of logical
completeness. See § 137 ff.

[177] Cf. Hannequin, Essai critique sur l'hypothèse des atomes, Paris, 1895, passim.



CH A PTER IV.
  

P H I L O S O P H I C A L  C O N S E Q U E N C E S .

180. In the present chapter, we have to discuss two questions which,
though scarcely geometrical, are of fundamental importance to the theory
of Geometry propounded above. The first of these questions is this: What
relation can a purely logical and deductive proof, like that from the nature
of a form of externality, bear to an experienced subject-matter such as
space? You have merely framed a general conception, I may be told,
containing space as a particular species, and you have then shown, what
should have been obvious from the beginning, that this general conception
contained some of the attributes of space. But what ground does this give
for regarding these attributes as à priori? The conception Mammal has
some of the attributes of a horse; but are these attributes therefore à priori
adjectives of the horse? The answer to this obvious objection is so
difficult, and involves so much general philosophy, that I have kept it for a
final chapter, in order not to interrupt the argument on specially
geometrical topics.

181. I have already indicated, in general terms, the ground for regarding
as à priori the properties of any form of externality. This ground is
transcendental, i.e. it is to be found in the conditions required for the
possibility of experience. The form of externality, like Riemann's
manifolds, is a general class-conception, including time as well as
Euclidean and non-Euclidean spaces. It is not motived, however, like the
manifolds, by a quantitative resemblance to space, but by the fact that it
fulfils, if it has more than one dimension, all those functions which, in our
actual world, are fulfilled by space. But a form of externality, in order to
accomplish this, must be, not a mere conception, but an actually
experienced intuition. Hence the conception of such a form is the general
conception, containing under it every logically possible intuition which
can fulfil the function actually fulfilled by space. And this function is, to
render possible experience of diverse but interrelated things. Some form in
sense-perception, then, whose conception is included under our form of



externality, is à priori necessary to experience of diversity in relation, and
without experience of this, we should, as modern logic shows, have no
experience at all. This still leaves untouched the relation of the à priori to
the subjective: the form of externality is necessary to experience, but is
not, on that account, to be declared purely subjective. Of course, necessity
for experience can only arise from the nature of the mind which
experiences; but it does not follow that the necessary conditions could be
fulfilled, unless the objective world had certain properties. The ground of
necessity, we may safely say, arises from the mind; but it by no means
follows that the truth of what is necessary depends only on the constitution
of the mind. Where this is not the case, our conclusion, when a piece of
knowledge has been declared à priori, can only be: Owing to the
constitution of the mind, experience will be impossible unless the world
accepts certain adjectives.

Such, in outline, will be the argument of the first half of this chapter,
and such will be the justification for regarding as à priori those axioms of
Geometry, which were deduced above from the conception of a form of
externality. For these axioms, and these only, are necessarily true of any
world in which experience is possible.

182[178]. The view suggested has, obviously, much in common with that
of the Transcendental Aesthetic. Indeed the whole of it, I believe, can be
obtained by a certain limitation and interpretation of Kant's classic
arguments. But as it differs, in many important points, from the
conclusions aimed at by Kant, and as the agreement may easily seem
greater than it is, I will begin by a brief comparison, and endeavour, by
reference to authoritative criticisms, to establish the legitimacy of my
divergence from him.

183. In the first place, the psychological element is much larger in
Kant's thesis than in mine. I shall contend, it is true, that a form of
externality, if it is to do its work, must not be a mere conception or a mere
inference, but must be a given element in sense-perception—not, of
course, originally given in isolation, but discoverable, through analysis, by
attention to the object of sense-perception[179]. But Kant contended, not
only that this element is given, but also that it is subjective. Space, for
him, is, on the one hand, not conceptual, but on the other hand, not



sensational. It forms, for him, no part of the data of sense, but is added by
a subjective intuition, which he regards as not only logically, but
psychologically, prior to objects in space[180].

This part of Kant's argument is wholly irrelevant for us. Whether a form
of externality be given in sense, or in a pure intuition, is for us
unimportant, since we neglect the question as to the connection of the à
priori and the subjective; while the temporal priority of space to objects in
it has been generally recognized as irrelevant to Epistemology, and has
often been regarded as forming no part of Kant's thesis[181]. If we call
intuitional whatever is given in sense-perception, then we may contend
that a form of externality must be intuitional; but whether it is a pure
intuition, in Kant's sense, or not, is irrelevant to us, as is its priority to the
objects in it.

That the non-sensational nature of space is no essential part of Kant's
logical teaching, appears from an examination of his argument. He has
made, in the introduction, the purely logical distinction of matter and
form, but has given to this distinction, in the very moment of suggesting
it, a psychological implication. This he does by the assertion that the form,
in which the matter of sensations is ordered, cannot itself be sensational.
From this assumption it follows, of course, that space cannot be
sensational. But the assumption is totally unsupported by argument, being
set forth, apparently, as a self-evident axiom; it has been severely
criticized by Stumpf[182] and others[183], and has been described by
Vaihinger as a fatal petitio principii[184]; it is irrelevant to the logical
argument, when this argument is separated, as we have separated it, from
all connection with psychological subjectivity; and finally, it leaves us a
prey to psychological theories of space, which have seemed, of late, but
little favourable to the pure Kantian doctrine.

184. We have a right, therefore, in an epistemological inquiry, to neglect
Kant's psychological teaching—in so far, at any rate, as it distinguishes
spatial intuition from sensation—and attend rather to the logical aspect
alone. That part of his psychological teaching, which maintains that space
is not a mere conception, is, with certain limitations, sufficiently evident
as applied to actual space; but for us, it must be transformed into a much
more difficult thesis, namely, that no form of externality, which renders



experience of diversity in relation possible, can be merely conceptual.
This question, to which we must return later, is no longer psychological,
but belongs wholly to Epistemology.

185. What, then, remains the kernel, for our purposes, of Kant's first
argument for the apriority of space? His argument, in the form in which he
gave it, is concerned with the eccentric projection of sensations. In order
that I may refer sensations, he says, to something outside myself, I must
already have the subjective space-form in the mind. In this shape, as
Vaihinger points out (Commentar, II. pp. 69, 165), the argument rests on a
petitio principii, for only if sensations are necessarily non-spatial does
their projection demand a subjective space-form. But, further, is the
logical apriority of space concerned with the externality of things to
ourselves?

Space seems to perform two functions: on the one hand, it reveals
things, by the eccentric projection of sensations, as external to the self,
while, on the other hand, it reveals simultaneously presented things as
mutually external. These two functions, though often treated as coordinate
and almost equivalent[185], seem to me widely different. Before we discuss
the apriority of space, we must carefully distinguish, I think, between
these two functions, and decide which of them we are to argue about.

Now externality to the Self, it would seem, must necessarily raise the
whole question of the nature and limits of the Ego, and what is more, it
cannot be derived from spatial presentation, unless we give the Self a
definite position in space. But things acquire a position in space only when
they can appear in sense-perception; we are forced, therefore, if we adopt
this view of the function of space, to regard the Self as a phenomenon
presented to sense-perception. But this reduces externality to the Self to
externality to the body. The body, however, is a presented object like any
other, and externality of objects to it is, therefore, a special case of the
mutual externality of presented things. Hence we cannot regard space as
giving, primarily at any rate, externality to the Self, but only the mutual
externality of the things presented to sense-perception[186].

186. This, then, is the kind of externality we are to expect from space,
and our question must be: Would the existence of diverse but interrelated
things be unknowable, if there were not, in sense-perception, some form of



externality? This is the crucial question, on which turns the apriority of
our form, and hence of the necessary axioms of Geometry.

187. The converse argument to mine, the argument from the spatio-
temporal element in perception to a world of interrelated but diverse
things, is developed at length in Bradley's Logic. It is put briefly in the
following sentence (p. 44, note): "If space and time are continuous, and if
all appearance must occupy some time or space—and it is not hard to
support both these theses—we can at once proceed to the conclusion, no
mere particular exists. Every phenomenon will exist in more times or
spaces than one; and against that diversity will be itself an universal[187]."
The importance of this fact appears, when we consider that, if any mere
particular existed, all judgment and inference as to that particular would
be impossible, since all judgment and inference necessarily operate by
means of universal. But all reality is constructed from the This of
immediate presentation, from which judgment and inference necessarily
spring. Owing, however, to the continuity and relativity of space and time,
no This can be regarded either as simple or as self-subsistent. Every This,
on the one hand, can be analyzed into Thises, and on the other hand, is
found to be necessarily related to other things, outside the limits of the
given object of sense-perception. This function of space and time is
presupposed in the following statement from Bosanquet's Logic (Vol. I. pp.
77–78): "Reality is given for me in present sensuous perception, and in the
immediate feeling of my own sentient existence that goes with it. The real
world, as a definite organized system, is for me an extension of this
present sensation and self feeling by means of judgment, and it is the
essence of judgment to effect and sustain such an extension.... The subject
in every judgment of Perception is some given spot or point in sensuous
contact with the percipient self. But, as all reality is continuous, the
subject is not merely this given spot or point."

188. This doctrine of Bradley and Bosanquet is the converse of the
epistemological doctrine I have to advocate. Owing to the continuity and
relativity of space and time, they say, we are able to construct a systematic
world, by judgment and inference, out of that fragmentary and yet
necessarily complex existence which is given in sense-perception. My
contention is, conversely, that since all knowledge is necessarily derived
by an extension of the This of sense-perception, and since such extension



is only possible if the This has that fragmentary and yet complex character
conferred by a form of externality, therefore some form of externality,
given with the This, is essential to all knowledge, and is thus logically à
priori. Bradley's argument, if sound, already proves this contention; for
while, on the one hand, he uses no properties of space and time but those
which belong to every form of externality, he proves, on the other hand,
that judgment and inference require the This to be neither single nor self-
subsistent. But I will endeavour, since the point is of fundamental
importance, to reproduce the proof, in a form more suited than Bradley's
to the epistemological question.

189. The essence of my contention is that, if experience is to be
possible, every sensational This must, when attended to, be found, on the
one hand, resolvable into Thises, and on the other hand dependent, for
some of its adjectives, on external reference. The second of these theses
follows from the first, for if we take one of the Thises contained in the
first This, we get a new This necessarily related to the other Thises which
make up the original This. I may, therefore, confine myself to the first
proposition, which affirms that the object of perception must contain a
diversity, not only of conceptual content, but of existence, and that this can
only be known if sense-perception contains, as an element, some form of
externality.

My premiss, in this argument, is that all knowledge involves a
recognition of diversity in relation, or, if we prefer it, of identity in
difference. This premiss I accept from Logic, as resulting from the
analysis of judgment and inference. To prove such a premiss, would
require a treatise on Logic; I must refer the reader, therefore, to the works
of Bradley and Bosanquet on the subject. It follows at once, from my
premiss, that knowledge would be impossible, unless the object of
attention could be complex, i.e. not a mere particular. Now could the
mental object—i.e., in this connection, the object of a cognition—be
complex, if the object of immediate perception were always simple?

190. We might be inclined, at first sight, to answer this question
affirmatively. But several difficulties, I think, would prevent such an
answer. In the first place, knowledge must start from perception. Hence,
either we could have no knowledge except of our present perception, or
else we must be able to contrast and compare it with some other



perception. Now in the first case, since the present perception, by
hypothesis, is a mere particular, knowledge of it is impossible, according
to our premiss. But in the second case, the other perception, with which we
compare our first, must have occurred at some other time, and with time,
we have at once a form of externality. But what is more, our present
perception is no longer a mere particular. For the power of comparing it
with another perception involves a point of identity between the two, and
thus renders both complex. Moreover, time must be continuous, and the
present, as Bradley points out, is no mere point of time[188]. Thus our
present perception contains the complexity involved in duration
throughout the specious present: its mere particularity and its simplicity
are lost. Its self-subsistence is also lost, for beyond the specious present,
lie the past and the future, to which our present perception thus
unavoidably refers us. Time at least, therefore, is essential to that identity
in difference, which all knowledge postulates.

191. But we have derived, from all this, no ground for affirming a
multiplicity of real things, or a form of externality of more than one
dimension, which, we saw, was necessary for the truth of two out of our
three axioms. This brings us to the question: Have we enough, with time
alone as a form of externality, for the possibility of knowledge?

This question we must, I think, answer in the negative. With time alone,
we have seen, our presented object must be complex, but its complexity
must, if I may use such a phrase, be merely adjectival. Without a second
form of externality, only one thing can be given at one moment[189], and
this one thing, therefore, must constitute the whole of our world. The
object of past perception must—since our one thing has nothing external
to it, by which it could be created or destroyed—be regarded as the same
thing in a different state. The complexity, therefore, will lie only in the
changing states of our one thing—it will be adjectival, not substantival.
Moreover we have the following dilemma: Either the one thing must be
ourselves, or else self-consciousness could never arise. But the chief
difficulty of such a world would lie in the changes of the thing. What
could cause these changes, since we should know of nothing external to
our thing? It would be like a Leibnitzian monad, without any God outside
it to prearrange its changes. Causality, in such a world, could not be
applied, and change would be wholly inexplicable.



Hence we require also the possibility of a diversity of simultaneously
existing things, not merely of successive adjectives; and this, we have
seen, cannot be given by time alone, but only by a form of externality for
simultaneous parts of one presentation. We could never, in other words,
infer the existence of diverse but interrelated things, unless the object of
sense-perception could have substantival complexity, and for such
complexity we require a form of externality other than time. Such a form,
moreover, as was shown in Chapter III., Section A (§ 135), can only fulfil
its functions if it has more than one dimension. In our actual world, this
form is given by space; in any world, knowable to beings with our laws of
thought, some such form, as we have now seen, must be given in sense-
perception.

This argument may be briefly summed up, by assuming the doctrine of
Bradley, that all knowledge is obtained by inference from the This of
sense-perception. For, if this be so, the This—in order that inference,
which depends on identity in difference, may be possible at all—must
itself be complex, and must, on analysis, reveal adjectives having a
reference beyond itself. But this, as was shown above, can only happen by
means of a form of externality. This establishes the à priori axioms of
Geometry, as necessarily having existential import and validity in any
intelligible world.

192. The above argument, I hope, has explained why I hold it possible to
deduce, from a mere conception like that of a form of externality, the
logical apriority of certain axioms as to experienced space. The Kantian
argument—which was correct, if our reasoning has been sound, in
asserting that real diversity, in our actual world, could only be known by
the help of space—was only mistaken, so far as its purely logical scope
extends, in overlooking the possibility of other forms of externality, which
could, if they existed, perform the same task with equal efficiency. In so
far as space differs, therefore, from these other conceptions of possible
intuitional forms, it is a mere experienced fact, while in so far as its
properties are those which all such forms must have, it is à priori
necessary to the possibility of experience.

I cannot hope, however, that no difficulty will remain, for the reader, in
such a deduction, from abstract conceptions, of the properties of an actual
datum in sense-perception. Let us consider, for example, such a property



as impenetrability. To suppose two things simultaneously in the same
position in a form of externality, is a logical contradiction; but can we say
as much of actual space and time? Is not the impossibility, here, a matter
of experience rather than of logic? Not if the above argument has been
sound, I reply. For in that case, we infer real diversity, i.e. the existence of
different things, only from difference of position in space or time. It
follows, that to suppose two things in the same point of space and time, is
still a logical contradiction: not because we have constructed the data of
sense out of logic, but because logic is dependent, as regards its
application, on the nature of these data. This instance illustrates, what I am
anxious to make plain, that my argument has not attempted to construct
the living wealth of sense-perception out of "bloodless categories," but
only to point out that, unless sense-perception contained a certain element,
these categories would be powerless to grapple with it.

193. How we are to account for the fortunate realization of these
requirements—whether by a pre-established harmony, by Darwinian
adaptation to our environment, by the subjectivity of the necessary
element in sense-perception, or by a fundamental identity and unity
between ourselves and the rest of reality—is a further question, belonging
rather to metaphysics than to our present line of argument. The à priori,
we have said throughout, is that which is necessary for the possibility of
experience, and in this we have a purely logical criterion, giving results
which only Logic and Epistemology can prove or disprove. What is
subjective in experience, on the contrary, is primarily a question for
psychology, and should be decided on psychological grounds alone. When
these two questions have been separately answered, but not till then, we
may frame theories as to the connection of the à priori and the subjective;
to allow such theories to influence our decision, on either of the two
previous questions, is liable, surely, to confuse the issue, and prevent a
clear discrimination between fundamentally different points of view.

194. I come now to the second question with which this chapter has to
deal, the question, namely: What are we to do with the contradictions
which obtruded themselves in Chapter III., whenever we came to a point
which seemed fundamental? I shall treat this question briefly, as I have
little to add to answers with which we are all familiar. I have only to
prove, first, that the contradictions are inevitable, and therefore form no



objection to my argument; secondly, that the first step in removing them is
to restore the notion of matter, as that which, in the data of sense-
perception, is localized and interrelated in space.

195. The contradictions in space are an ancient theme—as ancient, in
fact, as Zeno's refutation of motion. They are, roughly, of two kinds,
though the two kinds cannot be sharply divided. There are the
contradictions inherent in the notion of the continuum, and the
contradictions which spring from the fact that space, while it must, to be
knowable, be pure relativity, must also, it would seem, since it is
immediately experienced, be something more than mere relations. The
first class of contradictions has been encountered more frequently in this
essay, and is also, I think, the more definite, and the more important for
our present purpose. I doubt, however, whether the two classes are really
distinct; for any continuum, I believe, in which the elements are not data,
but intellectual constructions resulting from analysis, can be shown to
have the same relational and yet not wholly relational character as belongs
to space.

The three following contradictions, which I shall discuss successively,
seem to me the most prominent in a theory of Geometry.

(1) Though the parts of space are intuitively distinguished, no
conception is adequate to differentiate them. Hence arises a vain search
for elements, by which the differentiation could be accomplished, and for
a whole, of which the parts of space are to be components. Thus we get the
point, or zero extension, as the spatial element, and an infinite regress or a
vicious circle in the search for a whole.

(2) All positions being relative, positions can only be defined by their
relations, i.e. by the straight lines or planes through them; but straight
lines and planes, being all qualitatively similar, can only be defined by the
positions they relate. Hence, again, we get a vicious circle.

(3) Spatial figures must be regarded as relations. But a relation is
necessarily indivisible, while spatial figures are necessarily divisible ad
infinitum.

196. (1) Points. The antinomy of the point—which arises wherever a
continuum is given, and elements have to be sought in it—is fundamental



to Geometry. It has been given, perhaps unintentionally, by Veronese as the
first axiom, in the form: "There are different points. All points are
identical" (op. cit. p. 226). We saw, in discussing projective Geometry, that
straight lines and planes must be regarded, on the one hand as relations
between points, and on the other hand as made up of points[190]. We saw
again, in dealing with measurement, how space must be regarded as
infinitely divisible, and yet as mere relativity. But what is divisible and
consists of parts, as space does, must lead at last, by continued analysis, to
a simple and unanalyzable part, as the unit of differentiation. For whatever
can be divided, and has parts, possesses some thinghood, and must,
therefore, contain two ultimate units, the whole namely, and the smallest
element possessing thinghood. But in space this is notoriously not the
case. After hypostatizing space, as Geometry is compelled to do, the mind
imperatively demands elements, and insists on having them, whether
possible or not. Of this demand, all the geometrical applications of the
infinitesimal calculus are evidence[191]. But what sort of elements do we
thus obtain? Analysis, being unable to find any earlier halting-place, finds
its elements in points, that is, in zero quanta of space. Such a conception is
a palpable contradiction, only rendered tolerable by its necessity and
familiarity. A point must be spatial, otherwise it would not fulfil the
function of a spatial element; but again it must contain no space, for any
finite extension is capable of further analysis. Points can never be given in
intuition, which has no concern with the infinitesimal: they are a purely
conceptual construction, arising out of the need of terms between which
spatial relations can hold. If space be more than relativity, spatial relations
must involve spatial relata; but no relata appear, until we have analyzed
our spatial data down to nothing. The contradictory notion of the point, as
a thing in space without spatial magnitude, is the only outcome of our
search for spatial relata. This reductio ad absurdum surely suffices, by
itself, to prove the essential relativity of space.

197. Thus Geometry is forced, since it wishes to regard space as
independent, to hypostatize its abstractions, and therefore to invent a self-
contradictory notion as the spatial element. A similar absurdity appears,
even more obviously, in the notion of a whole of space. The antinomy may,
therefore, be stated thus: Space, as we have seen throughout, must, if
knowledge of it is to be possible, be mere relativity; but it must also, if



independent knowledge of it, such as Geometry seeks, is to be possible, be
something more than mere relativity, since it is divisible and has parts. But
we saw, in Chap. III., Section A (§ 133) that knowledge of a form of
externality must be logically independent of the particular matter filling
the form. How then are we to extricate ourselves from this dilemma?

The only way, I think, is, not to make Geometry dependent on Physics,
which we have seen to be erroneous[192], but to give every geometrical
proposition a certain reference to matter in general. And at this point an
important distinction must be made. We have hitherto spoken of space as
relational, and of spatial figures as relations. But space, it would seem, is
rather relativity than relations—itself not a relation, it gives the bare
possibility of relations between diverse things[193]. As applied to a spatial
figure, which can only arise by a differentiation of space, and hence by the
introduction of some differentiating matter, the word relation is, perhaps,
less misleading than any other; as applied to empty undifferentiated space,
it seems by no means an accurate description.

But a bare possibility cannot exist, or be given in sense-perception!
What becomes, then, of the arguments of the first part of this chapter? I
reply, it is not empty space, but spatial figures, which sense-perception
reveals, and spatial figures, as we have just seen, involve a differentiation
of space, and therefore a reference to the matter which is in space. It is
spatial figures, also, and not empty space, with which Geometry has to
deal. The antinomy discussed above arises then—so it would seem—from
the attempt to deal with empty space, rather than with spatial figures and
the matter to which they necessarily refer.

198. Let us see whether, by this change, we can overcome the antinomy
of the point. Spatial figures, we shall now say, are relations between the
matter which differentiates empty space. Their divisibility, which seemed
to contradict their relational character, may be explained in two ways:
first, as holding of the figures considered as parts of empty space, which is
itself not a relation; second, as denoting the possibility of continuous
change in the relation expressed by the spatial figure. These two ways are,
at bottom, the same; for empty space is a possibility of relations, and the
figure, when viewed in connection with empty space, thus becomes a
possible relation, with which other possible relations may be contrasted or



compared. But the second way of regarding divisibility is the better way,
since it introduces a reference to the matter which differentiates empty
space, without which, spatial figures, and therefore Geometry, could not
exist. It is empty space, then—so we must conclude—which gives rise to
the antinomy in question; for empty space is a bare possibility of relations,
undifferentiated and homogeneous, and thus wholly destitute of parts or of
thinghood. To speak of parts of a possibility is nonsense; the parts and
differentiations arise only through a reference to the matter which is
differentiated in space.

199. But what nature must we ascribe to this matter, which is to be
involved in all geometrical propositions? In criticizing Helmholtz (Chap.
II. § 73), it may be remembered, we decided that Geometry refers to a
peculiar and abstract kind of matter, which is not regarded as possessing
any causal qualities, as exerting or as subject to the action of forces. And
this is the matter, I think, which we require for the needs of the moment.
Not that we affirm, of course, that actual matter can be destitute of the
properties with which Physics is cognizant, but that we abstract from these
properties, as being irrelevant to Geometry. All that we require, for our
immediate purpose, is a subject of that diversity which space renders
possible, or terms for those relations by which empty space, if space is to
be studied at all, must be differentiated. But how must a matter, which is
to fulfil this function, be regarded?

Empty space, we have said, is a possibility of diversity in relation, but
spatial figures, with which Geometry necessarily deals, are the actual
relations rendered possible by empty space. Our matter, therefore, must
supply the terms for these relations. It must be differentiated, since such
differentiation, as we have seen, is the special work of space. We must
find, therefore, in our matter, that unit of differentiation, or atom[194],
which in space we could not find. This atom must be simple, i.e. it must
contain no real diversity; it must be a This not resolvable into Thises.
Being simple, it can contain no relations within itself, and consequently,
since spatial figures are mere relations, it cannot appear as a spatial figure;
for every spatial figure involves some diversity of matter. But our atom
must have spatial relations with other atoms, since to supply terms for
these relations is its only function. It is also capable of having these
relations, since it is differentiated from other atoms. Hence we obtain an



unextended term for spatial relations, precisely of the kind we require. So
long as we sought this term without reference to anything more than space,
the self-contradictory notion of the point was the only outcome of our
search; but now that we allow a reference to the matter differentiated by
space, we find at once the term which was needed, namely, a non-spatial
simple element, with spatial relations to other elements. To Geometry such
a term will appear, owing to its spatial relations, as a point; but the
contradiction of the point, as we now see, is a result only of the undue
abstraction with which Geometry deals.

200. (2) The circle in the definition of straight lines and planes. This
difficulty need not long detain us, since we have already, with the material
atom, broken through the relativity which caused our circle. Straight lines,
in the purely geometrical procedure, are defined only by points, and points
only by straight lines. But points, now, are replaced by material atoms: the
duality of points and lines, therefore, has disappeared, and the straight line
may be defined as the spatial relation between two unextended atoms.
These atoms have spatial adjectives, derived from their relations to other
atoms; but they have no intrinsic spatial adjectives, such as could belong
to them if they had extension or figure. Thus straight lines and planes are
the true spatial units, and points result only from the attempt to find,
within space, those terms for spatial relations which exist only in a more
than spatial matter. Straight lines, planes and volumes are the spatial
relations between two, three or four unextended atoms, and points are a
merely convenient geometrical fiction, by which possible atoms are
replaced. For, since space, as we saw, is a possibility, Geometry deals not
with actually realized spatial relations, but with the whole scheme of
possible relations.

201. (3) Space is at once relational and more than relational. We have
already touched on the question how far space is other than relations, but
as this question is quite fundamental, as relation is an ambiguous and
dangerous word, as I have made constant use of the relativity of space
without attempting to define a relation, it will be necessary to discuss this
antinomy at length.

202. Now for this discussion it is essential to distinguish clearly
between empty space and spatial figures. Empty space, as a form of
externality, is not actual relations, but the possibility of relations: if we



ascribe existential import to it, as the ground, in reality, of all diversity in
relation, we at once have space as something not itself relations, though
giving the possibility of all relations. In this sense, space is to be
distinguished from spatial order. Spatial order, it may be said, presupposes
space, as that in which this order is possible. Thus Stumpf says[195]:
"There is no order or relation without a positive absolute content,
underlying it, and making it possible to order anything in this manner.
Why and how should we otherwise distinguish one order from another?...
To distinguish different orders from one another, we must everywhere
recognize a particular absolute content, in relation to which the order takes
place. And so space, too, is not a mere order, but just that by which the
spatial order, side-by-sideness (Nebeneinander) distinguishes itself from
the rest."

May we not, then, resolve the antinomy very simply, by a reference to
this ambiguity of space? Bradley contends (Appearance and Reality, pp.
36–7) that, on the one hand, space has parts, and is therefore not mere
relations, while on the other hand, when we try to say what these parts are,
we find them after all to be mere relations. But cannot the space which has
parts be regarded as empty space, Stumpf's absolute underlying content,
which is not mere relations, while the parts, in so far as they turn out to be
mere relations, are those relations which constitute spatial order, not
empty space? If this can be maintained, the antinomy no longer exists.

But such an explanation, though I believe it to be a first step towards a
solution, will, I fear, itself demand almost as much explanation as the
original difficulty. For the connection of empty space with spatial order is
itself a question full of difficulty, to be answered only after much labour.

203. Let us consider what this empty space is. (I speak of "empty" space
without necessarily implying the absence of matter, but only to denote a
space which is not a mere order of material things.) Stumpf regards it as
given in sense; Kant, in the last two arguments of his metaphysical
deduction, argues that it is an intuition, not a concept, and must be known
before spatial order becomes possible. I wish to maintain, on the contrary,
that it is wholly conceptual; that space is given only as spatial order; that
spatial relations, being given, appear as more than mere relations, and so
become hypostatized; that when hypostatized, the whole collection of
them is regarded as contained in empty space; but that this empty space



itself, if it means more than the logical possibility of space-relations, is an
unnecessary and self-contradictory assumption. Let us begin by
considering Kant's arguments on this point.

Leibnitz had affirmed that space was only relations, while Newton had
maintained the objective reality of absolute space. Kant adopted a middle
course: he asserted absolute space, but regarded it as purely subjective.
The assertion of absolute space is the object of his second argument; for if
space were mere relations between things, it would necessarily disappear
with the disappearance of the things in it; but this the second argument
denies[196]. Now spatial order obviously does disappear with matter, but
absolute or empty space may be supposed to remain. It is this, then, which
Kant is arguing about, and it is this which he affirms to be a pure intuition,
necessarily presupposed by spatial order[197].

204. But can we agree in regarding empty space, the "infinite given
whole," as really given? Must we not, in spite of Kant's argument, regard it
as wholly conceptual? It is not required, in the first place, by the argument
of the first half of this chapter, which required only that every This of
sense-perception should be resolvable into Thises, and thus involved only
an order among Thises, not anything given originally without reference to
them at all. In the second place, Kant's two arguments[198] designed to
prove that empty space is not conceptual, are inadequate to their purpose.
The argument that the parts of space are not contained under it, but in it,
proves certainly that space is not a general conception, of which spatial
figures are the instances; but it by no means follows that empty space is
not a conception. Empty space is undifferentiated and homogeneous; parts
of space, or spatial figures, arise only by reference to some differentiating
matter, and thus belong rather to spatial order than to empty space. If
empty space be the pre-condition of spatial order, we cannot expect it to
be connected with spatial relations as genus with species. But empty space
may nevertheless be a universal conception; it may be related to spatial
order as the state to the citizens. These are not instances of the state, but
are contained in it; they also, in a sense, presuppose it, for a man can only
become a citizen by being related to other citizens in a state[199].

The uniqueness of space, again, seems hardly a valid argument for its
intuitional nature; to regard it as an argument implies, indeed, that all



conceptions are abstracted from a series of instances—a view which has
been criticized in Chapter II. (§ 77), and need not be further discussed
here[200]. There is no ground, therefore, in Kant's two arguments for the
intuitional nature of empty space, which can be maintained against
criticism.

205. Another ground for condemning empty space is to be found in the
mathematical antinomies. For it is no solution, as Lotze points out
(Metaphysik, Bk. II. Chap. I., § 106), to regard empty space as purely
subjective: contradictions in a necessary subjective intuition form as great
a difficulty as in anything else. But these antinomies arise only in
connection with empty space, not with spatial order as an aggregate of
relations. For only when space is regarded as possessed of some
thinghood, can a whole or a true element be demanded. This we have seen
already in connection with the Point. When space is regarded, so far as it
is valid, as only spatial order, unbounded extension and infinite
divisibility both disappear. What is divided is not spatial relations, but
matter; and if matter, as we have seen that Geometry requires, consists of
unextended atoms with spatial relations, there is no reason to regard
matter either as infinitely divisible, or as consisting of atoms of finite
extension.

206. But whence arises, on this view, the paradox that we cannot but
regard space as having more or less thinghood, and as divisible ad
infinitum? This must be explained, I think, as a psychological illusion,
unavoidably arising from the fact that spatial relations are immediately
presented. They thus have a peculiar psychical quality, as immediate
experiences, by which quality they can be distinguished from time-
relations or any other order in which things may be arranged. To Stumpf,
whose problem is psychological, such a psychical quality would constitute
an absolute underlying content, and would fully justify his thesis; to us,
however, whose problem is epistemological, it would not do so, but would
leave the meaning of the spatial element in sense-perception free from any
implication of an absolute or empty space[201]. May we not, then, abandon
empty space, and say: Spatial order consists of felt relations, and quâ felt
has, for Psychology, an existence not wholly resolvable into relations, and
unavoidably seeming to be more than mere relations. But when we
examine the information, as to space, which we derive from sense-



perception, we find ourselves plunged in contradictions, as soon as we
allow this information to consist of more than relations. This leaves
spatial order alone in the field, and reduces empty space to a mere name
for the logical possibility of spatial relations.



207. The apparent divisibility of the relations which constitute spatial
order, then, may be explained in two ways, though these are at bottom
equivalent. We may take the relation as considered in connection with
empty space, in which case it becomes more than a relation; but being
falsely hypostatized, it appears as a complex thing, necessarily composed
of elements, which elements, however, nowhere emerge until we analyze
the pseudo-thing down to nothing, and arrive at the point. In this sense, the
divisibility of spatial relations is an unavoidable illusion. Or again, we
may take the relation in connection with the material atoms it relates. In
this case, other atoms may be imagined, differently localized by different
spatial relations. If they are localized on the straight line joining two of
the original atoms, this straight line appears as divided by them. But the
original relation is not really divided: all that has happened is, that two or
more equivalent relations have replaced it, as two compounded relations
of father and son may replace the equivalent relation of grandfather and
grandson. These two ways of viewing the apparent divisibility are
equivalent: for empty space, in so far as it is not illusion, is a name for the
aggregate of possible space-relations. To regard a figure in empty space as
divided, therefore, means, if it means anything, to regard two or more
other possible relations as substituted for it, which gives the second way of
viewing the question.

The same reference to matter, then, by which the antinomy of the Point
was solved, solves also the antinomy as to the relational nature of space.
Space, if it is to be freed from contradictions, must be regarded
exclusively as spatial order, as relations between unextended material
atoms. Empty space, which arises, by an inevitable illusion, out of the
spatial element in sense-perception, may be regarded, if we wish to retain
it, as the bare principle of relativity, the bare logical possibility of
relations between diverse things. In this sense, empty space is wholly
conceptual; spatial order alone is immediately experienced.

208. But in what sense does spatial order consist of relations? We have
hitherto spoken of externality as a relation, and in a sense such a manner
of speaking is justified. Externality, when predicated of anything, is an
adjective of that thing, and implies a reference to some other thing. To this
extent, then, externality is analogous to other relations; and only to this
extent, in our previous arguments, has it been regarded as a relation. But



when we take account of further qualities of relations, externality begins
to appear, not so much as a relation, but rather as a necessary aspect or
element in every relation. And this is borne out by the necessity, for the
existence of relations, of some given form of externality.

Every relation, we may say, involves a diversity between the related
terms, but also some unity. Mere diversity does not give a ground for that
interaction, and that interdependence, which a relation requires. Mere
unity leaves the terms identical, and thus destroys the reference of one to
another required for a relation. Mere externality, taken in abstraction,
gives only the element of diversity required for a relation, and is thus
more abstract than any actual relation. But mere diversity does not give
that indivisible whole of which any actual relation must consist, and is
thus, when regarded abstractly, not subject to the restrictions of ordinary
relations.

But with mere diversity, we seem to have returned to empty space, and
abandoned spatial order. Mere diversity, surely, is either complete or non-
existent; degrees of diversity, or a quantitative measure of it, are nonsense.
We cannot, therefore, reduce spatial order to mere diversity. Two things, if
they occupy different positions in space, are necessarily diverse, but are as
necessarily something more; otherwise spatial order becomes unmeaning.

Empty space, then, in the above sense of the possibility of spatial
relations, contains only one aspect of a relation, namely the aspect of
diversity; but spatial order, by its reference to matter, becomes more
concrete, and contains also the element of unity, arising out of the
connection of the different material atoms. Spatial order, then, consists of
relations in the ordinary sense; its merely spatial element, however—if
one may make such a distinction—the element, that is, which can be
abstracted from matter and regarded as constituting empty space, is only
one aspect of a relation, but an aspect which, in the concrete, must be
inseparably bound up with the other aspect. Here, once more, we see the
ground of the contradictions in empty space, and the reason why spatial
order is free from these contradictions.

Conclusion.



209. We have now completed our review of the foundations of
Geometry. It will be well, before we take leave of the subject, briefly to
review and recapitulate the results we have won.

In the first chapter, we watched the development of a branch of
Mathematics designed, at first, only to establish the logical independence
of Euclid's axiom of parallels, and the possibility of a self-consistent
Geometry which dispensed with it. We found the further development of
the subject entangled, for a while, in philosophical controversy; having
shown one axiom to be superfluous, the geometers of the second period
hoped to prove the same conclusion of all the others, but failed to
construct any system free from three fundamental axioms. Being
concerned with analytical and metrical Geometry, they tended to regard
Algebra as à priori, but held that those properties of spatial magnitudes,
which were not deducible from the laws of Algebra, must be empirical. In
all this, they aimed as much at discrediting Kant as at advancing
Mathematics. But with the third period, the interest in Philosophy
diminishes, the opposition to Euclid becomes less marked, and most
important of all, measurement is no longer regarded as fundamental, and
space is dealt with by descriptive rather than quantitative methods. But
nevertheless, three axioms, substantially the same as those retained in the
second period, are still retained by all geometers.

In the second chapter, we endeavoured, by a criticism of some
geometrical philosophies, to prepare the ground for a constructive theory
of Geometry. We saw that Kant, in applying the argument of the
Transcendental Aesthetic to space, had gone too far, since its logical scope
extended only to some form of externality in general. We saw that
Riemann, Helmholtz and Erdmann, misled by the quantitative bias,
overlooked the qualitative substratum required by all judgments of
quantity, and thus mistook the direction in which the necessary axioms of
Geometry are to be found. We rejected, also, Helmholtz's view that
Geometry depends on Physics, because we found that Physics must
assume a knowledge of Geometry before it can become possible. But we
admitted, in Geometry, a reference to matter—not, however, to matter as
empirically known in Physics, but to a more abstract matter, whose sole
function is to appear in space, and supply the terms for spatial relations.
We admitted, however, besides this, that all actual measurement must be



effected by means of actual matter, and is only empirically possible,
through the empirical knowledge of approximately rigid bodies. In
criticizing Lotze, we saw that the most important sense, in which non-
Euclidean spaces are possible, is a philosophical sense, namely, that they
are not condemned by any à priori argument as to the necessity of space
for experience, and that consequently, if they are not affirmed, this must
be on empirical grounds alone. Lotze's strictures on the mathematical
procedure of Metageometry we found to be wholly due to ignorance of the
subject.

Proceeding, in the third chapter, to a constructive theory of Geometry,
we saw that projective Geometry, which has no reference to quantity, is
necessarily true of any form of externality. Its three axioms—
homogeneity, dimensions, and the straight line—were all deduced from
the conception of a form of externality, and, since some such form is
necessary to experience, were all declared à priori. In metrical Geometry,
on the contrary, we found an empirical element, arising out of the
alternatives of Euclidean and non-Euclidean space. Three à priori axioms,
common to these spaces, and necessary conditions of the possibility of
measurement, still remained; these were the axiom of Free Mobility, the
axiom that space has a finite integral number of dimensions, and the
axiom of distance. Except for the new idea of motion, these were found
equivalent to the projective triad, and thus necessarily true of any form of
externality. But the remaining axioms of Euclid—the axiom of three
dimensions, the axiom that two straight lines can never enclose a space,
and the axiom of parallels—were regarded as empirical laws, derived from
the investigation and measurement of our actual space, and true only, as
far as the last two are concerned, within the limits set by errors of
observation.

In the present chapter, we completed our proof of the apriority of the
projective and equivalent metrical axioms, by showing the necessity, for
experience, of some form of externality, given by sensation or intuition,
and not merely inferred from other data. Without this, we said, a
knowledge of diverse but interrelated things, the corner-stone of all
experience, would be impossible. Finally, we discussed the contradictions
arising out of the relativity and continuity of space, and endeavoured to
overcome them by a reference to matter. This matter, we found, must



consist of unextended atoms, localized by their spatial relations, and
appearing, in Geometry, as points. But the non-spatial adjectives of matter,
we contended, are irrelevant to Geometry, and its causal properties may be
left out of account. To deal with the new contradictions, involved in such a
notion of matter, would demand a fresh treatise, leading us, through
Kinematics, into the domains of Dynamics and Physics. But to discuss the
special difficulties of space is all that is possible in an essay on the
Foundations of Geometry.
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[193] See third antinomy below, § 201 ff.

[194] This atom, of course, must not be confounded with the atom of Chemistry.

[195] Ursprung der Raumvorstellung, p. 15.

[196] See Vaihinger's Commentar, II. pp. 189–190.



[197] See ibid. p. 224 ff. for Kant's inconsistencies on this point.

[198] The fourth and fifth in the first edition, the third and fourth in the second.

[199] Cf. Vaihinger's Commentar, II. p. 218.

[200] Cf. Vaihinger's Commentar, II. p. 207.

[201] Cf. James, Psychology, Vol. II., p. 148 ff.
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