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INTRODUCTION



If	 there	 ever	 was	 a	 case	 of	 appropriateness	 in	 discovery,	 the	 finding	 of	 this

manuscript	 in	the	summer	of	1906	was	one.	In	the	first	place	it	was	appropriate

that	 the	discovery	 should	be	made	 in	Constantinople,	 since	 it	was	here	 that	 the

West	received	its	first	manuscripts	of	the	other	extant	works,	nine	in	number,	of

the	great	Syracusan.	It	was	furthermore	appropriate	that	the	discovery	should	be

made	 by	 Professor	 Heiberg,	 facilis	 princeps	 among	 all	 workers	 in	 the	 field	 of

editing	 the	 classics	 of	 Greek	mathematics,	 and	 an	 indefatigable	 searcher	 of	 the

libraries	of	Europe	for	manuscripts	to	aid	him	in	perfecting	his	labors.	And	finally

it	was	most	appropriate	that	this	work	should	appear	at	a	time	when	the	affiliation

of	pure	and	applied	mathematics	is	becoming	so	generally	recognized	all	over	the

world.	We	are	sometimes	led	to	feel,	 in	considering	isolated	cases,	that	the	great

contributors	of	the	past	have	worked	in	the	field	of	pure	mathematics	alone,	and

the	saying	of	Plutarch	that	Archimedes	felt	that	“every	kind	of	art	connected	with

daily	 needs	 was	 ignoble	 and	 vulgar”1	 may	 have	 strengthened	 this	 feeling.	 It

therefore	assists	us	in	properly	orientating	ourselves	to	read	another	treatise	from

the	 greatest	 mathematician	 of	 antiquity	 that	 sets	 clearly	 before	 us	 his

indebtedness	to	the	mechanical	applications	of	his	subject.

Not	the	least	interesting	of	the	passages	in	the	manuscript	is	the	first	line,	the

greeting	 to	 Eratosthenes.	 It	 is	 well	 known,	 on	 the	 testimony	 of	 Diodoros	 his

countryman,	 that	 Archimedes	 studied	 in	 Alexandria,	 and	 the	 latter	 frequently

makes	mention	of	Konon	of	Samos	whom	he	knew	there,	probably	as	a	 teacher,

and	to	whom	he	was	indebted	for	the	suggestion	of	the	spiral	that	bears	his	name.

It	 is	also	 related,	 this	 time	by	Proclos,	 that	Eratosthenes	was	a	 contemporary	of

Archimedes,	and	 if	 the	 testimony	of	 so	 late	a	writer	as	Tzetzes,	who	 lived	 in	 the

twelfth	century,	may	be	taken	as	valid,	the	former	was	eleven	years	the	junior	of

the	great	Sicilian.	Until	now,	however,	we	have	had	nothing	definite	to	show	that

the	two	were	ever	acquainted.	The	great	Alexandrian	savant	—	poet,	geographer,

arithmetician	—	affectionately	called	by	the	students	Pentathlos,	the	champion	in

five	sports,2	selected	by	Ptolemy	Euergetes	to	succeed	his	master,	Kallimachos	the

poet,	as	head	of	 the	great	Library	—	this	man,	the	most	renowned	of	his	time	in

Alexandria,	 could	 hardly	 have	 been	 a	 teacher	 of	 Archimedes,	 nor	 yet	 the	 fellow

student	 of	 one	who	was	 so	much	his	 senior.	 It	 is	more	probable	 that	 they	were

friends	in	the	later	days	when	Archimedes	was	received	as	a	savant	rather	than	as

a	learner,	and	this	is	borne	out	by	the	statement	at	the	close	of	proposition	I	which

refers	to	one	of	his	earlier	works,	showing	that	this	particular	treatise	was	a	 late



one.	 This	 reference	 being	 to	 one	 of	 the	 two	 works	 dedicated	 to	 Dositheos	 of

Kolonos,3	 and	 one	 of	 these	 (De	 lineis	 spiralibus)	 referring	 to	 an	 earlier	 treatise

sent	 to	 Konon,4	 we	 are	 led	 to	 believe	 that	 this	 was	 one	 of	 the	 latest	 works	 of

Archimedes	and	that	Eratosthenes	was	a	friend	of	his	mature	years,	although	one

of	long	standing.	The	statement	that	the	preliminary	propositions	were	sent	“some

time	ago”	bears	out	this	idea	of	a	considerable	duration	of	friendship,	and	the	idea

that	more	or	 less	correspondence	had	resulted	from	this	communication	may	be

inferred	by	the	statement	that	he	saw,	as	he	had	previously	said,	that	Eratosthenes

was	“a	capable	scholar	and	a	prominent	teacher	of	philosophy,”	and	also	that	he

understood	 “how	 to	 value	 a	 mathematical	 method	 of	 investigation	 when	 the

opportunity	offered.”	We	have,	 then,	new	light	upon	the	relations	between	these

two	men,	the	leaders	among	the	learned	of	their	day.

A	second	feature	of	much	interest	in	the	treatise	is	the	intimate	view	that	we

have	into	the	workings	of	the	mind	of	the	author.	It	must	always	be	remembered

that	Archimedes	was	primarily	a	discoverer,	and	not	primarily	a	compiler	as	were

Euclid,	 Apollonios,	 and	 Nicomachos.	 Therefore	 to	 have	 him	 follow	 up	 his	 first

communication	 of	 theorems	 to	 Eratosthenes	 by	 a	 statement	 of	 his	 mental

processes	in	reaching	his	conclusions	is	not	merely	a	contribution	to	mathematics

but	one	 to	education	as	well.	Particularly	 is	 this	 true	 in	 the	 following	statement,

which	may	 well	 be	 kept	 in	mind	 in	 the	 present	 day:	 “I	 have	 thought	 it	 well	 to

analyse	and	 lay	down	 for	you	 in	 this	 same	book	a	peculiar	method	by	means	of

which	 it	 will	 be	 possible	 for	 you	 to	 derive	 instruction	 as	 to	 how	 certain

mathematical	 questions	may	 be	 investigated	 by	means	 of	mechanics.	 And	 I	 am

convinced	that	this	is	equally	profitable	in	demonstrating	a	proposition	itself;	for

much	that	was	made	evident	 to	me	 through	 the	medium	of	mechanics	was	 later

proved	by	means	of	geometry,	because	 the	 treatment	by	 the	 former	method	had

not	yet	been	established	by	way	of	a	demonstration.	For	of	 course	 it	 is	easier	 to

establish	 a	 proof	 if	 one	 has	 in	 this	way	 previously	 obtained	 a	 conception	 of	 the

questions,	than	for	him	to	seek	it	without	such	a	preliminary	notion.	.	.	.	Indeed	I

assume	 that	 some	 one	 among	 the	 investigators	 of	 to-day	 or	 in	 the	 future	 will

discover	by	the	method	here	set	forth	still	other	propositions	which	have	not	yet

occurred	to	us.”	Perhaps	in	all	the	history	of	mathematics	no	such	prophetic	truth

was	ever	put	into	words.	It	would	almost	seem	as	if	Archimedes	must	have	seen	as

in	 a	 vision	 the	methods	 of	 Galileo,	 Cavalieri,	 Pascal,	 Newton,	 and	many	 of	 the

other	great	makers	of	the	mathematics	of	the	Renaissance	and	the	present	time.



The	 first	 proposition	 concerns	 the	 quadrature	 of	 the	 parabola,	 a	 subject

treated	at	 length	 in	one	of	his	earlier	communications	 to	Dositheos.5	He	gives	a

digest	of	the	treatment,	but	with	the	warning	that	the	proof	is	not	complete,	as	it	is

in	 his	 special	 work	 upon	 the	 subject.	 He	 has,	 in	 fact,	 summarized	 propositions

VII-XVII	of	his	communication	to	Dositheos,	omitting	the	geometric	treatment	of

propositions	XVIII-XXIV.	One	thing	that	he	does	not	state,	here	or	 in	any	of	his

works,	is	where	the	idea	of	center	of	gravity6	started.	It	was	certainly	a	common

notion	 in	his	day,	 for	he	often	uses	 it	without	defining	 it.	 It	appears	 in	Euclid’s7

time,	but	how	much	earlier	we	cannot	as	yet	say.

Proposition	 II	 states	 no	 new	 fact.	 Essentially	 it	 means	 that	 if	 a	 sphere,

cylinder,	and	cone	(always	circular)	have	the	same	radius,	r,	and	the	altitude	of	the

cone	is	r	and	that	of	the	cylinder	2r,	then	the	volumes	will	be	as	4:	1:	6,	which	is

true,	since	they	are	respectively	4/3	πr³,	1/3	πr³,	and	2πr³.	The	interesting	thing,

however,	 is	 the	 method	 pursued,	 the	 derivation	 of	 geometric	 truths	 from

principles	 of	 mechanics.	 There	 is,	 too,	 in	 every	 sentence,	 a	 little	 suggestion	 of

Cavalieri,	an	anticipation	by	nearly	two	thousand	years	of	the	work	of	the	greatest

immediate	precursor	of	Newton.	And	the	geometric	imagination	that	Archimedes

shows	in	the	last	sentence	is	also	noteworthy	as	one	of	the	interesting	features	of

this	work:	“After	I	had	thus	perceived	that	a	sphere	 is	 four	 times	as	 large	as	 the

cone	.	.	.	it	occurred	to	me	that	the	surface	of	a	sphere	is	four	times	as	great	as	its

largest	circle,	in	which	I	proceeded	from	the	idea	that	just	as	a	circle	is	equal	to	a

triangle	whose	base	is	the	periphery	of	the	circle,	and	whose	altitude	is	equal	to	its

radius,	so	a	sphere	is	equal	to	a	cone	whose	base	is	the	same	as	the	surface	of	the

sphere	 and	 whose	 altitude	 is	 equal	 to	 the	 radius	 of	 the	 sphere.”	 As	 a	 bit	 of

generalization	 this	 throws	 a	 good	deal	 of	 light	 on	 the	workings	 of	Archimedes’s

mind.

In	 proposition	 III	 he	 considers	 the	 volume	 of	 a	 spheroid,	 which	 he	 had

already	treated	more	fully	in	one	of	his	letters	to	Dositheos,8	and	which	contains

nothing	new	from	a	mathematical	standpoint.	Indeed	it	is	the	method	rather	than

the	conclusion	that	is	interesting	in	such	of	the	subsequent	propositions	as	relate

to	mensuration.	Proposition	V	deals	with	 the	center	of	gravity	of	a	segment	of	a

conoid,	 and	 proposition	 VI	 with	 the	 center	 of	 gravity	 of	 a	 hemisphere,	 thus

carrying	into	solid	geometry	the	work	of	Archimedes	on	the	equilibrium	of	planes

and	on	their	centers	of	gravity.9	The	general	method	is	that	already	known	in	the

treatise	mentioned,	and	this	is	followed	through	proposition	X.



Proposition	XI	is	the	interesting	case	of	a	segment	of	a	right	cylinder	cut	off

by	a	plane	through	the	center	of	the	lower	base	and	tangent	to	the	upper	one.	He

shows	this	to	equal	one-sixth	of	the	square	prism	that	circumscribes	the	cylinder.

This	is	well	known	to	us	through	the	formula	v	=	2r²	h/3,	the	volume	of	the	prism

being	 4r²	 h,	 and	 requires	 a	 knowledge	 of	 the	 center	 of	 gravity	 of	 the	 cylindric

section	in	question.	Archimedes	is,	so	far	as	we	know,	the	first	to	state	this	result,

and	he	obtains	it	by	his	usual	method	of	the	skilful	balancing	of	sections.	There	are

several	 lacunae	 in	 the	 demonstration,	 but	 enough	 of	 it	 remains	 to	 show	 the

ingenuity	 of	 the	 general	 plan.	 The	 culminating	 interest	 from	 the	 mathematical

standpoint	lies	in	proposition	XIII,	where	Archimedes	reduces	the	whole	question

to	 that	 of	 the	 quadrature	 of	 the	 parabola.	 He	 shows	 that	 a	 fourth	 of	 the

circumscribed	 prism	 is	 to	 the	 segment	 of	 the	 cylinder	 as	 the	 semi-base	 of	 the

prism	is	to	the	parabola	inscribed	in	the	semi-base;	that	is,	that	1/4	p:	v	=	1/2	b:	(

2/3	 ·	 1/2	 b),	 whence	 v	 =	 1/6	 p.	 Proposition	 XIV	 is	 incomplete,	 but	 it	 is	 the

conclusion	of	the	two	preceding	propositions.

In	general,	therefore,	the	greatest	value	of	the	work	lies	in	the	following:

1.	 It	throws	light	upon	the	hitherto	only	suspected	relations	of	Archimedes	and

Eratosthenes.

2.	 It	 shows	 the	 working	 of	 the	 mind	 of	 Archimedes	 in	 the	 discovery	 of

mathematical	 truths,	showing	that	he	often	obtained	his	results	by	 intuition

or	 even	 by	 measurement,	 rather	 than	 by	 an	 analytic	 form	 of	 reasoning,

verifying	these	results	later	by	strict	analysis.

3.	 It	 expresses	 definitely	 the	 fact	 that	Archimedes	was	 the	 discoverer	 of	 those

properties	 relating	 to	 the	 sphere	 and	 cylinder	 that	 have	 been	 attributed	 to

him	and	that	are	given	in	his	other	works	without	a	definite	statement	of	their

authorship.

4.	 It	 shows	 that	 Archimedes	 was	 the	 first	 to	 state	 the	 volume	 of	 the	 cylinder

segment	mentioned,	and	it	gives	an	interesting	description	of	the	mechanical

method	by	which	he	arrived	at	his	result.

David	Eugene	Smith.

Teachers	College,	Columbia	University.

1	Marcellus,	17.



2	His	nickname	of	Beta	is	well	known,	possibly	because	his	lecture	room	was	number	2.

3	We	know	little	of	his	works,	none	of	which	are	extant.	Geminos	and	Ptolemy	refer	to	certain
observations	made	by	him	in	200	B.	C.,	twelve	years	after	the	death	of	Archimedes.	Pliny	also
mentions	him.

4	Τῶν	ποτ�	Κόνωνα	άπυσταλέντων	υεωρημάτων.

5	Τετραγωνισμδς	παραβολῆς

6	Κέντρα	βαρῶν	for	“barycentric”	is	a	very	old	term.

7	At	any	rate	in	the	anonymous	fragment	De	levi	et	ponderoso,	sometimes	attributed	to	him.

8	Περ�	κωνοειδεῶν	και	σφαιροειδεῶν.

9	́ ‘Επιπέδων	�σορροπιῶν	ῆ	κέντρα	βαρῶν	έπιπέδων.



Archimedes	to	Eratosthenes,	Greeting:

Some	time	ago	I	sent	you	some	theorems	I	had	discovered,	writing	down	only

the	propositions	because	I	wished	you	to	find	their	demonstrations	which	had	not

been	given.	The	propositions	of	the	theorems	which	I	sent	you	were	the	following:

1.	 If	 in	 a	 perpendicular	 prism	with	 a	 parallelogram10	 for	 base	 a	 cylinder	 is

inscribed	 which	 has	 its	 bases	 in	 the	 opposite	 parallelograms10	 and	 its	 surface

touching	the	other	planes	of	the	prism,	and	if	a	plane	is	passed	through	the	center

of	the	circle	that	is	the	base	of	the	cylinder	and	one	side	of	the	square	lying	in	the

opposite	 plane,	 then	 that	 plane	will	 cut	 off	 from	 the	 cylinder	 a	 section	which	 is

bounded	by	two	planes,	the	intersecting	plane	and	the	one	in	which	the	base	of	the

cylinder	 lies,	 and	 also	by	 as	much	of	 the	 surface	 of	 the	 cylinder	 as	 lies	 between

these	 same	planes;	 and	 the	 detached	 section	 of	 the	 cylinder	 is	 1/6	 of	 the	whole

prism.

2.	 If	 in	 a	 cube	 a	 cylinder	 is	 inscribed	 whose	 bases	 lie	 in	 opposite

parallelograms*	 and	whose	 surface	 touches	 the	 other	 four	 planes,	 and	 if	 in	 the

same	 cube	 a	 second	 cylinder	 is	 inscribed	 whose	 bases	 lie	 in	 two	 other

parallelograms*	and	whose	surface	 touches	 the	 four	other	planes,	 then	 the	body

enclosed	by	the	surface	of	 the	cylinder	and	comprehended	within	both	cylinders

will	be	equal	to	2/3	of	the	whole	cube.

*	This	must	mean	a	square.

These	propositions	differ	essentially	from	those	formerly	discovered;	for	then

we	 compared	 those	 bodies	 (conoids,	 spheroids	 and	 their	 segments)	 with	 the

volume	of	cones	and	cylinders	but	none	of	them	was	found	to	be	equal	to	a	body

enclosed	by	planes.	Each	of	these	bodies,	on	the	other	hand,	which	are	enclosed	by

two	 planes	 and	 cylindrical	 surfaces	 is	 found	 to	 be	 equal	 to	 a	 body	 enclosed	 by

planes.	The	demonstration	of	these	propositions	I	am	accordingly	sending	to	you

in	this	book.

Since	I	see,	however,	as	I	have	previously	said,	that	you	are	a	capable	scholar

and	a	prominent	teacher	of	philosophy,	and	also	that	you	understand	how	to	value

a	mathematical	method	of	 investigation	when	 the	 opportunity	 is	 offered,	 I	 have

thought	 it	 well	 to	 analyze	 and	 lay	 down	 for	 you	 in	 this	 same	 book	 a	 peculiar

GEOMETRICAL	SOLUTIONS	DERIVED	FROM	MECHANICS.



method	by	means	of	which	 it	will	be	possible	 for	you	 to	derive	 instruction	as	 to

how	certain	mathematical	questions	may	be	investigated	by	means	of	mechanics.

And	I	am	convinced	that	this	is	equally	profitable	in	demonstrating	a	proposition

itself;	 for	much	that	was	made	evident	 to	me	through	the	medium	of	mechanics

was	 later	 proved	 by	 means	 of	 geometry	 because	 the	 treatment	 by	 the	 former

method	had	not	yet	been	established	by	way	of	a	demonstration.	For	of	course	it	is

easier	to	establish	a	proof	if	one	has	in	this	way	previously	obtained	a	conception

of	the	questions,	than	for	him	to	seek	it	without	such	a	preliminary	notion.	Thus	in

the	 familiar	 propositions	 the	 demonstrations	 of	 which	 Eudoxos	was	 the	 first	 to

discover,	namely	that	a	cone	and	a	pyramid	are	one	third	the	size	of	that	cylinder

and	prism	respectively	that	have	the	same	base	and	altitude,	no	little	credit	is	due

to	 Democritos	 who	 was	 the	 first	 to	 make	 that	 statement	 about	 these	 bodies

without	 any	 demonstration.	 But	we	 are	 in	 a	 position	 to	 have	 found	 the	 present

proposition	in	the	same	way	as	the	earlier	one;	and	I	have	decided	to	write	down

and	 make	 known	 the	 method	 partly	 because	 we	 have	 already	 talked	 about	 it

heretofore	and	so	no	one	would	think	that	we	were	spreading	abroad	idle	talk,	and

partly	 in	 the	conviction	that	by	 this	means	we	are	obtaining	no	slight	advantage

for	mathematics,	for	indeed	I	assume	that	some	one	among	the	investigators	of	to-

day	 or	 in	 the	 future	 will	 discover	 by	 the	 method	 here	 set	 forth	 still	 other

propositions	which	have	not	yet	occurred	to	us.

In	 the	 first	 place	we	will	 now	 explain	what	 was	 also	 first	made	 clear	 to	 us

through	mechanics,	 namely	 that	 a	 segment	 of	 a	 parabola	 is	 4/3	 of	 the	 triangle

possessing	 the	 same	base	and	equal	 altitude;	 following	which	we	will	 explain	 in

order	the	particular	propositions	discovered	by	the	above	mentioned	method;	and

in	the	last	part	of	the	book	we	will	present	the	geometrical	demonstrations	of	the

propositions.*

*	 In	 his	 “Commentar,”	 Professor	 Zeuthen	 calls	 attention	 to	 the	 fact	 that	 it	 was	 aiready
known	from	Heron’s	recently	discovered	Metrica	that	these	propositions	were	contained	in
this	treatise,	and	Professor	Heiberg	made	the	same	comment	in	Hermes.	—	Tr.

1.	 If	 one	 magnitude	 is	 taken	 away	 from	 another	 magnitude	 and	 the	 same

point	is	the	center	of	gravity	both	of	the	whole	and	of	the	part	removed,	then	the

same	point	is	the	center	of	gravity	of	the	remaining	portion.

2.	If	one	magnitude	is	taken	away	from	another	magnitude	and	the	center	of

gravity	of	the	whole	and	of	the	part	removed	is	not	the	same	point,	the	center	of

gravity	 of	 the	 remaining	 portion	 may	 be	 found	 by	 prolonging	 the	 straight	 line



which	connects	 the	centers	of	gravity	of	 the	whole	and	of	 the	part	removed,	and

setting	off	upon	it	another	straight	line	which	bears	the	same	ratio	to	the	straight

line	between	the	aforesaid	centers	of	gravity,	as	the	weight	of	the	magnitude	which

has	been	taken	away	bears	to	the	weight	of	the	one	remaining	[De	plan.	aequil.	I,

8].

3.	 If	 the	 centers	 of	 gravity	 of	 any	number	of	magnitudes	 lie	upon	 the	 same

straight	line,	then	will	the	center	of	gravity	of	all	the	magnitudes	combined	lie	also

upon	the	same	straight	line	[Cf.	ibid.	I,	5].

4.	The	center	of	gravity	of	a	straight	line	is	the	center	of	that	line	[Cf.	ibid.	I,

4].

5.	The	center	of	 gravity	of	 a	 triangle	 is	 the	point	 in	which	 the	 straight	 lines

drawn	from	the	angles	of	a	triangle	to	the	centers	of	 the	opposite	sides	 intersect

[Ibid.	I,	14].

6.	 The	 center	 of	 gravity	 of	 a	 parallelogram	 is	 the	 point	where	 its	 diagonals

meet	[Ibid.	I,	10].

7.	The	center	of	gravity	[of	a	circle]	is	the	center	[of	that	circle].

8.	The	center	of	gravity	of	a	cylinder	[is	the	center	of	its	axis].

9.	The	center	of	gravity	of	a	prism	is	the	center	of	its	axis.

10.	The	center	of	gravity	of	a	cone	so	divides	 its	axis	 that	 the	section	at	 the

vertex	is	three	times	as	great	as	the	remainder.

11.	Moreover	together	with	the	exercise	here	laid	down	I	will	make	use	of	the

following	proposition:

If	any	number	of	magnitudes	stand	in	the	same	ratio	to	the	same	number	of

other	magnitudes	which	correspond	pair	by	pair,	and	if	either	all	or	some	of	the

former	magnitudes	stand	in	any	ratio	whatever	to	other	magnitudes,	and	the	latter

in	the	same	ratio	to	the	corresponding	ones,	then	the	sum	of	the	magnitudes	of	the

first	series	will	bear	the	same	ratio	to	the	sum	of	those	taken	from	the	third	series

as	the	sum	of	those	of	the	second	series	bears	to	the	sum	of	those	taken	from	the

fourth	series	[De	Conoid.	I].

PROPOSITION	I



Fig.	1.

Let	αβγ	[Fig.	1]	be	the	segment	of	a	parabola	bounded	by	the	straight	line	αγ	and

the	parabola	αβγ.	Let	αγ	be	bisected	at	δ,	δβε	being	parallel	to	the	diameter,	and

draw	αβ,	and	βγ.	Then	the	segment	αβγ	will	be	4/3	as	great	as	the	triangle	αβγ.

From	the	points	α	and	γ	draw	αζ	δβε,	and	the	tangent	γζ;	produce	[γβ	to	κ,

and	make	κθ	=	γκ].	Think	of	γθ	as	a	scale-beam	with	the	center	at	κ	and	let	μξ	be

any	straight	line	whatever	δ.	Now	since	γβα	is	a	parabola,	γζ	a	tangent	and	γδ	an

ordinate,	 then	εβ	=	βδ;	 for	 this	 indeed	has	been	proved	 in	 the	Elements	 [i.e.,	of

conic	sections,	cf.	Quadr.	parab.	2].	For	this	reason	and	because	ζα	and	μξ	εδ,	μν	=

νξ,	and	ζκ	=	κα.	And	because	γα:	αξ	=	μξ:	ξo	(for	this	is	shown	in	a	corollary,	[cf.

Quadr.	 parab.	 5]),	 γα:	αξ	=	 γκ:	 κν;	 and	 γκ	=	κθ,	 therefore	θκ:	 κν	=	μξ:	 ξo.	And

because	ν	is	the	center	of	gravity	of	the	straight	line	μξ,	since	μν	=	νξ,	then	if	we

make	τ	η	=	ξo	and	θ	as	its	center	of	gravity	so	that	τ	θ	=	θη,	the	straight	line	τ	θη

will	 be	 in	 equilibrium	 with	 μξ	 in	 its	 present	 position	 because	 θν	 is	 divided	 in

inverse	proportion	to	the	weights	τ	η	and	μξ,	and	θκ:	κν	=	μξ:	ητ;	therefore	κ	is	the

center	of	gravity	of	the	combined	weight	of	the	two.	In	the	same	way	all	straight

lines	 drawn	 in	 the	 triangle	 ζαγ∥δ	 are	 in	 their
present	positions	in	equilibrium	with	their	parts

cut	 off	 by	 the	 parabola,	 when	 these	 are

transferred	to	θ,	so	that	κ	is	the	center	of	gravity

of	the	combined	weight	of	the	two.	And	because

the	 triangle	γζα	consists	of	 the	 straight	 lines	 in

the	triangle	γζα	and	the	segment	αβγ	consists	of

those	 straight	 lines	 within	 the	 segment	 of	 the

parabola	 corresponding	 to	 the	 straight	 line	 ξo,

therefore	the	triangle	ζαγ	in	its	present	position

will	 be	 in	 equilibrium	 at	 the	 point	 κ	 with	 the	 parabola-segment	 when	 this	 is

transferred	 to	 θ	 as	 its	 center	 of	 gravity,	 so	 that	 κ	 is	 the	 center	 of	 gravity	 of	 the

combined	weights	of	the	two.	Now	let	γκ	be	so	divided	at	χ	that	γκ	=	3κχ;	then	χ

will	 be	 the	 center	 of	 gravity	 of	 the	 triangle	 αζγ,	 for	 this	 has	 been	 shown	 in	 the

Statics	 [cf.	De	plan.	 aequil.	 I,	 15,	p.	 186,	3	with	Eutokios,	S.	 320,	5ff.].	Now	 the

triangle	 ζαγ	 in	 its	 present	 position	 is	 in	 equilibrium	 at	 the	 point	 κ	 with	 the

segment	βαγ	when	this	is	transferred	to	θ	as	its	center	of	gravity,	and	the	center	of

gravity	of	the	triangle	ζαγ	is	χ;	hence	triangle	αζγ:	segm.	αβγ	when	transferred	to	θ

as	its	center	of	gravity	=	θκ:	κχ.	But	θκ	=	3κχ;	hence	also	triangle	αζγ	=	3	segm.

αβγ.	But	 it	 is	 also	 true	 that	 triangle	 ζαγ	=	4∆αβγ	because	 ζκ	=	κα	and	αδ	=	δγ;



hence	segm.	αβγ	=	4/3	the	triangle	αβγ.	This	is	of	course	clear.

It	 is	 true	 that	 this	 is	not	proved	by	what	we	have	said	here;	but	 it	 indicates

that	the	result	is	correct.	And	so,	as	we	have	just	seen	that	it	has	not	been	proved

but	 rather	 conjectured	 that	 the	 result	 is	 correct	 we	 have	 devised	 a	 geometrical

demonstration	which	we	made	known	some	time	ago	and	will	again	bring	forward

farther	on.

Fig.	2.

PROPOSITION	II

That	a	sphere	 is	 four	 times	as	 large	as	a	cone	whose	base	 is	equal	 to	 the	 largest

circle	of	 the	 sphere	and	whose	altitude	 is	 equal	 to	 the	 radius	of	 the	 sphere,	 and

that	a	cylinder	whose	base	 is	equal	 to	 the	 largest	circle	of	 the	sphere	and	whose

altitude	is	equal	to	the	diameter	of	the	circle	is	one	and	a	half	times	as	large	as	the

sphere,	may	be	seen	by	the	present	method	in	the	following	way:

Let	 αβγδ	 [Fig.	 2]	 be	 the	 largest	 circle	 of	 a

sphere	 and	 αγ	 and	 βδ	 its	 diameters

perpendicular	 to	each	other;	 let	 there	be	 in	 the

sphere	a	circle	on	the	diameter	βδ	perpendicular

to	 the	 circle	 αβγδ,	 and	 on	 this	 perpendicular

circle	 let	there	be	a	cone	erected	with	its	vertex

at	α;	producing	 the	convex	surface	of	 the	cone,

let	 it	be	cut	 through	γ	by	a	plane	parallel	 to	 its

base;	 the	 result	will	be	 the	circle	perpendicular

to	 αγ	 whose	 diameter	 will	 be	 ζ.	 On	 this	 circle

erect	 a	 cylinder	 whose	 axis	 =	 αγ	 and	 whose

vertical	boundaries	are	λ	and	ζη.	Produce	γα	making	αθ	=	γα	and	think	of	γθ	as	a

scale-beam	with	 its	center	at	α.	Then	 let	μν	be	any	straight	 line	whatever	drawn

∥βδ	intersecting	the	circle	αβγδ	in	ξ	and	o,	the	diameter	αγ	in	σ,	the	straight	line	α
in	π	and	αζ	in	ρ,	and	on	the	straight	line	μν	construct	a	plane	perpendicular	to	αγ;

it	will	 intersect	the	cylinder	in	a	circle	on	the	diameter	μν;	the	sphere	αβγδ,	 in	a

circle	on	the	diameter	ξo;	the	cone	α	ζ	in	a	circle	on	the	diameter	πρ.	Now	because

γα	×	ασ	=	μσ	×	σπ	(	for	αγ	=	σμ,	ασ	=	πσ),	and	γα×ασ	=	αξ²	=	ξσ²	+	απ²	then	μσ	×

σπ	=	ξσ²	+	σπ².	Moreover,	because	γα:	ασ	=	μσ:	σπ	and	γα	=	αθ,	therefore	θα:	ασ

=	μσ:	σπ	=	μσ²:	μσ	×	σπ.	But	it	has	been	proved	that	ξσ²	+	σπ²	=	μσ	×	σπ;	hence

αθ:	ασ	=	μσ²:	ξσ²	+	σπ².	But	it	is	true	that	μσ²:	ξσ²	+	σπ²	=	μν²:	ξα²	+	πρ²	=	the



circle	in	the	cylinder	whose	diameter	is	μν:	the	circle	in	the	cone	whose	diameter	is

πρ	+	the	circle	in	the	sphere	whose	diameter	is	ξo;	hence	θα:	ασ	=	the	circle	in	the

cylinder:	the	circle	in	the	sphere	+	the	circle	in	the	cone.	Therefore	the	circle	in	the

cylinder	in	its	present	position	will	be	in	equilibrium	at	the	point	α	with	the	two

circles	whose	diameters	are	ξo	and	πρ,	if	they	are	so	transferred	to	θ	that	θ	is	the

center	 of	 gravity	 of	 both.	 In	 the	 same	 way	 it	 can	 be	 shown	 that	 when	 another

straight	 line	 is	 drawn	 in	 the	 parallelogram	 ξλ	 ζ,	 and	 upon	 it	 a	 plane	 is	 erected

perpendicular	to	αγ,	the	circle	produced	in	the	cylinder	in	its	present	position	will

be	 in	equilibrium	at	the	point	α	with	the	two	circles	produced	in	the	sphere	and

the	cone	when	they	are	transferred	and	so	arranged	on	the	scale-beam	at	the	point

θ	that	θ	is	the	center	of	gravity	of	both.	Therefore	if	cylinder,	sphere	and	cone	are

filled	 up	 with	 such	 circles	 then	 the	 cylinder	 in	 its	 present	 position	 will	 be	 in

equilibrium	 at	 the	 point	 α	 with	 the	 sphere	 and	 the	 cone	 together,	 if	 they	 are

transferred	and	so	arranged	on	the	scale-beam	at	the	point	θ	that	θ	is	the	center	of

gravity	of	both.	Now	since	the	bodies	we	have	mentioned	are	in	equilibrium,	the

cylinder	with	κ	as	its	center	of	gravity,	the	sphere	and	the	cone	transferred	as	we

have	said	so	that	they	have	θ	as	center	of	gravity,	then	θα:	ακ	=	cylinder:	sphere	+

cone.	But	θα	=	2ακ,	and	hence	also	the	cylinder	=	2	×	(sphere	+	cone).	But	 it	 is

also	 true	 that	 the	 cylinder	=	3	 cones	 [Euclid,	Elem.	XII,	 10],	hence	3	 cones	=	2

cones	+	2	spheres.	If	2	cones	be	subtracted	from	both	sides,	then	the	cone	whose

axes	form	the	triangle	α	ζ	=	2	spheres.	But	the	cone	whose	axes	form	the	triangle	α

ζ	=	8	cones	whose	axes	form	the	triangle	αβδ	because	ζ	=	2βδ,	hence	the	aforesaid

8	cones	=	2	spheres.	Consequently	the	sphere	whose	greatest	circle	is	αβγδ	is	four

times	as	large	as	the	cone	with	its	vertex	at	α,	and	whose	base	is	the	circle	on	the

diatneter	βδ	perpendicular	to	αγ.	Draw	the	straight	lines	φβχ	and	ψδω	αγ	through

β	and	δ	in	the	parallelogram	λζ	and	imagine	a	cylinder	whose	bases	are	the	circles

on	the	diameters	φψ	and	χω	and	whose	axis	is	αγ.	Now	since	the	cylinder	whose

axes	form	the	parallelogram	φω	is	twice	as	large	as	the	cylinder	whose	axes	form

the	parallelogram	φδ	and	the	latter	is	three	times	as	large	as	the	cone	the	triangle

of	 whose	 axes	 is	 αβδ,	 as	 is	 shown	 in	 the	 Elements	 [Euclid,	 Elem.	 XII,	 10],	 the

cylinder	whose	axes	 form	the	parallelogram	φω	 is	 six	 times	as	 large	as	 the	cone

whose	axes	form	the	triangle	αβδ.	But	it	was	shown	that	the	sphere	whose	largest

circle	is	αβγδ	is	four	times	as	large	as	the	same	cone,	consequently	the	cylinder	is

one	and	one	half	times	as	large	as	the	sphere,	Q.	E.	D.

After	 I	 had	 thus	 perceived	 that	 a	 sphere	 is	 four	 times	 as	 large	 as	 the	 cone



whose	 base	 is	 the	 largest	 circle	 of	 the	 sphere	 and	whose	 altitude	 is	 equal	 to	 its

radius,	it	occurred	to	me	that	the	surface	of	a	sphere	is	four	times	as	great	as	its

largest	circle,	in	which	I	proceeded	from	the	idea	that	just	as	a	circle	is	equal	to	a

triangle	whose	base	is	the	periphery	of	the	circle	and	whose	altitude	is	equal	to	its

radius,	so	a	sphere	is	equal	to	a	cone	whose	base	is	the	same	as	the	surface	of	the

sphere	and	whose	altitude	is	equal	to	the	radius	of	the	sphere.

PROPOSITION	III

By	 this	 method	 it	 may	 also	 be	 seen	 that	 a	 cylinder	 whose	 base	 is	 equal	 to	 the

largest	circle	of	a	spheroid	and	whose	altitude	is	equal	to	the	axis	of	the	spheroid,

is	one	and	one	half	times	as	large	as	the	spheroid,	and	when	this	is	recognized	it

becomes	clear	that	if	a	spheroid	is	cut	through	its	center	by	a	plane	perpendicular

to	its	axis,	one-half	of	the	spheroid	is	twice	as	great	as	the	cone	whose	base	is	that

of	the	segment	and	its	axis	the	same.	For	let	a	spheroid	be	cut	by	a	plane	through

its	axis	and	let	there	be	in	its	surface	an	ellipse	αβγδ	[Fig.	3]	whose	diameters	are

αγ	and	βδ	and	whose	center	 is	κ	and	 let	 there	be	a	circle	 in	 the	spheroid	on	the

diameter	 βδ	 perpendicular	 to	 αγ;	 then	 imagine	 a	 cone	 whose	 base	 is	 the	 same

circle	but	whose	vertex	is	at	α,	and	producing	its	surface,	let	the	cone	be	cut	by	a

plane	through	γ	parallel	to	the	base;	the	intersection	will	be	a	circle	perpendicular

to	αγ	with	ζ	as	its	diameter.	Now	imagine	a	cylinder	whose	base	is	the	same	circle

with	the	diameter	ζ	and	whose	axis	is	αγ;	let	γα	be	produced	so	that	αθ	=	γα;	think

of	 θγ	 as	 a	 scale-beam	 with	 its	 center	 at	 α	 and	 in	 the	 parallelogram	 λθ	 draw	 a

straight	 line	 μν	 ζ,	 and	 on	 μν	 construct	 a	 plane	 perpendicular	 to	 αγ;	 this	 will

intersect	 the	 cylinder	 in	 a	 circle	 whose	 diameter	 is	 μν,	 the	 spheroid	 in	 a	 circle

whose	diameter	is	ξo	and	the	cone	in	a	circle	whose	diameter	is	πρ.	Because	γα:	ασ

=	α:	απ	=	μσ:	σπ,	and	γα	=	αθ,	therefore	θα:	ασ	=	μσ:	σπ.	But	μσ:	σπ	=	μσ²:	μσ	×

σπ	and	μσ	×	σπ	=	πσ²	+	σξ²,	for	ασ	×	σγ:	σξ²	=	ακ	×	κγ:	κβ²	=	ακ²:	κβ²	(for	both

ratios	are	equal	to	the	ratio	between	the	diameter	and	the	parameter	[Apollonius,

Con.	 I,	 21])	 =	 ασ²:	 σπ²	 therefore	 ασ²:	 ασ	 ×	 σγ	 =	 πσ²:	 σξ²	 =	 σπ²:	 σπ	 ×	 πμ,

consequently	μπ	×	πσ	=	σξ².	If	πσ²	is	added	to	both	sides	then	μσ	×	σπ	=	πσ²	+

σξ².	Therefore	θα:	ασ	=	μσ²:	πσ²	+	σξ².	But	μσ²:	 σξ²	+	σπ²	=	 the	 circle	 in	 the

cylinder	whose	diameter	is	μν:	the	circle	with	the	diameter	ξo	+	the	circle	with	the

diameter	πρ;	hence	the	circle	whose	diameter	is	μν	will	in	its	present	position	be

in	equilibrium	at	the	point	α	with	the	two	circles	whose	diameters	are	ξo	and	πρ

when	they	are	transferred	and	so	arranged	on	the	scale-beam	at	the	point	α	that	θ



Fig.	3.

is	 the	 center	 of	 gravity	 of	 both;	 and	 θ	 is	 the	 center	 of	 gravity	 of	 the	 two	 circles

combined	whose	diameters	are	ξo	and	πρ	when	their	position	 is	changed,	hence

θα:	ασ	=	the	circle	with	the	diameter	μν:	 the	two	circles	whose	diameters	are	ξo

and	πρ.	In	the	same	way	it	can	be	shown	that	if	another	straight	line	is	drawn	in

the	 parallelogram	 λζ	 ζ	 and	 on	 this	 line	 last	 drawn	 a	 plane	 is	 constructed

perpendicular	 to	αγ,	 then	 likewise	 the	 circle	 produced	 in	 the	 cylinder	will	 in	 its

present	 position	be	 in	 equilibrium	at	 the	point	α	with	 the	 two	 circles	 combined

which	have	been	produced	in	the	spheroid	and	in	the	cone	respectively	when	they

are	so	transferred	to	the	point	θ	on	the	scale-beam	that	θ	is	the	center	of	gravity	of

both.	 Then	 if	 cylinder,	 spheroid	 and	 cone	 are

filled	 with	 such	 circles,	 the	 cylinder	 in	 its

present	 position	 will	 be	 in	 equilibrium	 at	 the

point	α	with	the	spheroid	+	the	cone	if	they	are

transferred	 and	 so	 arranged	 on	 the	 scale-beam

at	 the	 point	 α	 that	 θ	 is	 the	 center	 of	 gravity	 of

both.	 Now	 κ	 is	 the	 center	 of	 gravity	 of	 the

cylinder,	but	θ,	as	has	been	said,	is	the	center	of

gravity	 of	 the	 spheroid	 and	 cone	 together.

Therefore	 θα:	 ακ	 =	 cylinder:	 spheroid	 +	 cone.

But	 αθ	 =	 2ακ,	 hence	 also	 the	 cylinder	 =	 2	 ×

(spheroid	 +	 cone)	 =	 2	 ×	 spheroid	 +	 2	 ×	 cone.

But	the	cylinder	=	3	×	cone,	hence	3	×	cone	=	2	×	cone	+	2	×	spheroid.	Subtract	2

×	 cone	 from	 both	 sides;	 then	 a	 cone	 whose	 axes	 form	 the	 triangle	 α	 ζ	 =	 2	 ×

spheroid.

But	the	same	cone	=	8	cones	whose	axes	form	the	∆αβδ;	hence	8	such	cones	=

2	×	spheroid,	4	×	cone	=	spheroid;	whence	it	follows	that	a	spheroid	is	four	times

as	 great	 as	 a	 cone	 whose	 vertex	 is	 at	 α,	 and	 whose	 base	 is	 the	 circle	 on	 the

diameter	βδ	perpendicular	to	λ,	and	one-half	the	spheroid	is	twice	as	great	as	the

same	cone.

In	 the	 parallelogram	 λζ	 draw	 the	 straight	 lines	 φχ	 and	 ψω	 αγ	 through	 the

points	β	and	δ	and	imagine	a	cylinder	whose	bases	are	the	circles	on	the	diameters

φψ	 and	 χω,	 and	whose	 axis	 is	 αγ.	Now	 since	 the	 cylinder	whose	 axes	 form	 the

parallelogram	 φω	 is	 twice	 as	 great	 as	 the	 cylinder	 whose	 axes	 form	 the

parallelogram	φδ	because	their	bases	are	equal	but	the	axis	of	the	first	is	twice	as

great	 as	 the	 axis	 of	 the	 second,	 and	 since	 the	 cylinder	 whose	 axes	 form	 the



parallelogram	 φδ	 is	 three	 times	 as	 great	 as	 the	 cone	 whose	 vertex	 is	 at	 α	 and

whose	base	is	the	circle	on	the	diameter	βδ	perpendicular	to	αγ,	then	the	cylinder

whose	axes	form	the	parallelogram	φω	is	six	times	as	great	as	the	aforesaid	cone.

But	it	has	been	shown	that	the	spheroid	is	four	times	as	great	as	the	same	cone,

hence	the	cylinder	is	one	and	one	half	times	as	great	as	the	spheroid.	Q.	E.	D.

PROPOSITION	IV

That	a	segment	of	a	right	conoid	cut	by	a	plane	perpendicular	to	its	axis	is	one	and

one	half	times	as	great	as	the	cone	having	the	same	base	and	axis	as	the	segment,

can	be	proved	by	the	same	method	in	the	following	way:	Let	a	right	conoid	be	cut

through	its	axis	by	a	plane	intersecting	the	surface	in	a	parabola	αβγ	[Fig.	4];	let	it

be	also	cut	by	another	plane	perpendicular	to	the	axis,	and	let	their	common	line

of	intersection	be	βγ.	Let	the	axis	of	the	segment	be	δα	and	let	it	be	produced	to	θ

so	that	θα	=	αδ.	Now	imagine	δθ	to	be	a	scale-beam	with	 its	center	at	α;	 let	 the

base	of	the	segment	be	the	circle	on	the	diameter	βγ	perpendicular	to	αδ;	imagine

a	 cone	 whose	 base	 is	 the	 circle	 on	 the	 diameter	 βγ,	 and	 whose	 vertex	 is	 at	 α.

Imagine	also	a	cylinder	whose	base	is	the	circle	on	the	diameter	βγ	and	its	axis	αδ,

and	in	the	parallelogram	let	a	straight	line	μν	be	drawn	βγ	and	on	μν	construct	a

plane	perpendicular	to	αδ;	it	will	intersect	the	cylinder	in	a	circle	whose	diameter

is	μν,	and	the	segment	of	 the	right	conoid	 in	a	circle	whose	diameter	 is	ξo.	Now

since	βαγ	is	a	parabola,	αδ	its	diameter	and	ξσ	and	βδ	its	ordinates,	then	[Quadr.

parab.	3]	δα:	ασ	=	βδ²:	ξσ².	But	δα	=	αθ,	therefore	θα:	ασ	=	μσ²:	σξ².	But	μσ²:	σξ²

=	the	circle	in	the	cylinder	whose	diameter	is	μν:	the	circle	in	the	segment	of	the

right	conoid	whose	diameter	is	ξo,	hence	θα:	ασ	=	the	circle	with	the	diameter	μν:

the	circle	with	the	diameter	ξo;	therefore	the	circle	in	the	cylinder	whose	diameter

is	μν	is	in	its	present	position,	in	equilibrium	at	the	point	α	with	the	circle	whose

diameter	is	ξo	if	this	be	transferred	and	so	arranged	on	the	scale-beam	at	θ	that	θ

is	its	center	of	gravity.	And	the	center	of	gravity	of	the	circle	whose	diameter	is	μν

is	at	σ,	that	of	the	circle	whose	diameter	 is	ξo	when	its	position	is	changed,	 is	θ,

and	we	have	the	inverse	proportion,	θα:	ασ	=	the	circle	with	the	diameter	μν:	the

circle	 with	 the	 diameter	 ξo.	 In	 the	 same	 way	 it	 can	 be	 shown	 that	 if	 another

straight	line	be	drawn	in	the	parallelogram	γ	βγ	the	circle	formed	in	the	cylinder,

will	in	its	present	position	be	in	equilibrium	at	the	point	α	with	that	formed	in	the

segment	of	 the	right	conoid	 if	 the	 latter	 is	so	 transferred	to	θ	on	the	scale-beam

that	θ	is	its	center	of	gravity.	Therefore	if	the	cylinder	and	the	segment	of	the	right



Fig.	4.

conoid	 are	 filled	 up	 then	 the	 cylinder	 in	 its

present	 position	 will	 be	 in	 equilibrium	 at	 the

point	α	with	 the	 segment	of	 the	 right	 conoid	 if

the	 latter	 is	 transferred	and	so	arranged	on	the

scale-beam	 at	 θ	 that	 θ	 is	 its	 center	 of	 gravity.

And	 since	 these	magnitudes	 are	 in	 equilibrium

at	 α,	 and	 κ	 is	 the	 center	 of	 gravity	 of	 the

cylinder,	if	αδ	is	bisected	at	κ	and	θ	is	the	center

of	 gravity	 of	 the	 segment	 transferred	 to	 that

point,	 then	we	have	 the	 inverse	proportion	θα:

ακ	=	cylinder:	 segment.	But	θα	=	2ακ	and	also

the	cylinder	=	2	×	segment.	But	the	same	cylinder	is	3	times	as	great	as	the	cone

whose	base	is	the	circle	on	the	diameter	βγ	and	whose	vertex	is	at	α;	therefore	it	is

clear	that	the	segment	is	one	and	one	half	times	as	great	as	the	same	cone.

PROPOSITION	V

That	the	center	of	gravity	of	a	segment	of	a	right	conoid	which	is	cut	off	by	a	plane

perpendicular	to	the	axis,	lies	on	the	straight	line	which	is	the	axis	of	the	segment

divided	 in	 such	 a	 way	 that	 the	 portion	 at	 the	 vertex	 is	 twice	 as	 great	 as	 the

remainder,	may	be	perceived	by	our	method	in	the	following	way:

Let	a	segment	of	a	right	conoid	cut	off	by	a	plane	perpendicular	to	the	axis	be

cut	by	another	plane	through	the	axis,	and	let	the	intersection	in	its	surface	be	the

parabola	αβγ	[Fig.	5]	and	let	the	common	line	of	intersection	of	the	plane	which

cut	off	the	segment	and	of	the	intersecting	plane	be	βγ;	let	the	axis	of	the	segment

and	 the	 diameter	 of	 the	 parabola	 αβγ	 be	 αδ;	 produce	 δα	 so	 that	 αθ	 =	 αδ	 and

imagine	 δθ	 to	 be	 a	 scale-beam	with	 its	 center	 at	 α;	 then	 inscribe	 a	 cone	 in	 the

segment	with	the	lateral	boundaries	βα	and	αγ	and	in	the	parabola	draw	a	straight

line	ξo	βγ	and	let	it	cut	the	parabola	in	ξ	and	o	and	the	lateral	boundaries	of	the

cone	in	π	and	ρ.	Now	because	ξσ	and	βδ	are	drawn	perpendicular	to	the	diameter

of	the	parabola,	δα:	ασ	=	βδ²:	ξσ²	[Quadr.	parab.	3].	But	δα:	ασ	=	βδ:	πσ	=	βδ²:	βδ

×	πσ,	therefore	also	βδ²:	ξσ²	=	βδ²:	βδ	×	πσ.	Consequently	ξσ²	=	βδ	×	πσ	and	βδ:

ξσ	=	ξσ:	πσ,	therefore	βδ:	πσ	=	ξσ²:	σπ².	But	βδ:	πσ	=	δα:	ασ	=	θα:	ασ,	therefore

also	 θα:	 ασ	 =	 ξσ²:	 σπ².	On	 ξo	 con	 struct	 a	 plane	 perpendicular	 to	 αδ;	 this	will

intersect	the	segment	of	the	right	conoid	in	a	circle	whose	diameter	is	ξo	and	the



Fig.	5.

cone	 in	 a	 circle	 whose	 diameter	 is	 πρ.	 Now

because	 θα:	 ασ	=	 ξσ²:	 σπ²	 and	 ξσ²:	 σπ²	=	 the

circle	 with	 the	 diameter	 ξo:	 the	 circle	 with	 the

diameter	πρ,	therefore	θα:	ασ	=	the	circle	whose

diameter	 is	ξo:	 the	circle	whose	diameter	 is	πρ.

Therefore	the	circle	whose	diameter	is	ξo	will	in

its	 present	 position	 be	 in	 equilibrium	 at	 the

point	 α	 with	 the	 circle	 whose	 diameter	 is	 πρ

when	 this	 is	 so	 transferred	 to	 θ	 on	 the	 scale-

beam	that	θ	is	its	center	of	gravity.	Now	since	σ

is	 the	 center	 of	 gravity	 of	 the	 circle	 whose

diameter	 is	 ξo	 in	 its	 present	 position,	 and	 θ	 is

the	center	of	gravity	of	the	circle	whose	diameter	is	πρ	if	its	position	is	changed	as

we	have	said,	and	inversely	θα:	ασ	=	the	circle	with	the	diameter	ξo:	the	circle	with

the	diameter	πρ,	then	the	circles	are	in	equilibrium	at	the	point	α.	In	the	same	way

it	 can	be	shown	that	 if	another	straight	 line	 is	drawn	 in	 the	parabola	βγ	and	on

this	line	last	drawn	a	plane	is	constructed	perpendicular	to	αδ,	the	circle	formed	in

the	segment	of	the	right	conoid	will	in	its	present	position	be	in	equilibrium	at	the

point	 α	 with	 the	 circle	 formed	 in	 the	 cone,	 if	 the	 latter	 is	 transferred	 and	 so

arranged	 on	 the	 scale-beam	 at	 θ	 that	 θ	 is	 its	 center	 of	 gravity.	 Therefore	 if	 the

segment	and	the	cone	are	filled	up	with	circles,	all	circles	in	the	segment	will	be	in

their	present	positions	in	equilibrium	at	the	point	α	with	all	circles	of	the	cone	if

the	latter	are	transferred	and	so	arranged	on	the	scale-beam	at	the	point	θ	that	θ	is

their	center	of	gravity.	Therefore	also	the	segment	of	the	right	conoid	in	its	present

position	will	be	in	equilibrium	at	the	point	α	with	the	cone	if	it	is	transferred	and

so	arranged	on	the	scale-beam	at	θ	that	θ	is	its	center	of	gravity.	Now	because	the

center	of	gravity	of	both	magnitudes	taken	together	is	α,	but	that	of	the	cone	alone

when	 its	 position	 is	 changed	 is	 θ,	 then	 the	 center	 of	 gravity	 of	 the	 remaining

magnitude	lies	on	αθ	extended	towards	α	if	ακ	is	cut	off	in	such	a	way	that	αθ:	ακ

=	 segment:	 cone.	 But	 the	 segment	 is	 one	 and	 one	 half	 the	 size	 of	 the	 cone,

consequently	 αθ	 =	 3/2	 ακ	 and	 κ,	 the	 center	 of	 gravity	 of	 the	 right	 conoid,	 so

divides	αδ	 that	 the	 portion	 at	 the	 vertex	 of	 the	 segment	 is	 twice	 as	 large	 as	 the

remainder.

PROPOSITION	VI



Fig.	6.

[The	center	of	gravity	of	a	hemisphere	 is	so	divided	on	 its	axis]	 that	 the	portion

near	the	surface	of	the	hemisphere	is	in	the	ratio	of	5:	3	to	the	remaining	portion.

Let	a	sphere	be	cut	by	a	plane	 through	 its	center	 intersecting	 the	surface	 in

the	circle	αβγδ	[Fig.6],	αγ	and	βδ	being	two	diameters	of	the	circle	perpendicular

to	each	other.	Let	a	plane	be	constructed	on	βδ	perpendicular	to	αγ.	Then	imagine

a	cone	whose	base	is	the	circle	with	the	diameter	βδ,	whose	vertex	is	at	α	and	its

lateral	boundaries	are	βα	and	αδ;	let	γα	be	produced	so	that	αθ	=	γα,	imagine	the

straight	line	θγ	to	be	a	scale-beam	with	its	center	at	α	and	in	the	semi-circle	βαδ

draw	a	straight	line	ξo	βδ;	let	it	cut	the	circumference	of	the	semicircle	in	ξ	and	o,

the	lateral	boundaries	of	the	cone	in	π	and	ρ,	and	αγ	in.	On	ξo	construct	a	plane

perpendicular	 to	α;	 it	will	 intersect	 the	hemisphere	 in	a	circle	with	 the	diameter

ξo,	and	the	cone	in	a	circle	with	the	diameter	πρ.	Now	because	αγ:	α	=	ξα²:	α²	and

ξα²	=	α²	+	ξ²	and	α	=	π,	therefore	αγ:	α	=	ξ²	+	π²:	π².	But	ξ²	+	π²:	π²	=	the	circle

with	the	diameter	ξo	+	the	circle	with	the	diameter	πρ:	the	circle	with	the	diameter

πρ,	and	γα	=	αθ,	hence	θα:	α	=	the	circle	with	the	diameter	ξo	+	the	circle	with	the

diameter	 πρ:	 circle	 with	 the	 diameter	 πρ.

Therefore	the	two	circles	whose	diameters	are	ξo

and	 πρ	 in	 their	 present	 position	 are	 in

equilibrium	at	the	point	α	with	the	circle	whose

diameter	 is	 πρ	 if	 it	 is	 transferred	 and	 so

arranged	at	θ	that	θ	is	its	center	of	gravity.	Now

since	 the	 center	 of	 gravity	 of	 the	 two	 circles

whose	diameters	are	ξo	and	πρ	in	their	present

position	 [is	 the	 point,	 but	 of	 the	 circle	 whose

diameter	 is	 πρ	 when	 its	 position	 is	 changed	 is

the	 point	 θ,	 then	 θα:	 α	 =	 the	 circles	 whose

diameters	 are]	 ξo	 [,πρ:	 the	 circle	 whose

diameter	 is	 πρ.	 In	 the	 same	 way	 if	 another

straight	 line	 in	 the]	 hemisphere	 βαδ	 [is	 drawn

βδ	and	a	plane	is	constructed]	perpendicular	to

[αγ	the]	two	[circles	produced	in	the	cone	and	in

the	 hemisphere	 are	 in	 their	 position]	 in

equilibrium	 at	 α	 [with	 the	 circle	 which	 is

produced	 in	 the	 cone]	 if	 it	 is	 transferred	 and

arranged	 on	 the	 scale	 at	 θ.	 [Now	 if]	 the



hemisphere	 and	 the	 cone	 [are	 filled	 up	 with	 circles	 then	 all	 circles	 in	 the]

hemisphere	and	those	[in	the	cone]	will	in	their	present	position	be	in	equilibrium

[with	all	circles]	in	the	cone,	if	these	are	transferred	and	so	arranged	on	the	scale-

beam	 at	 θ	 that	 θ	 is	 their	 center	 of	 gravity;	 [therefore	 the	 hemisphere	 and	 cone

also]	 are	 in	 their	 position	 [in	 equilibrium	 at	 the	 point	 α]	 with	 the	 cone	 if	 it	 is

transferred	and	so	arranged	[on	the	scale-beam	at	θ]	that	θ	is	its	center	of	gravity.

Fig.	7.

PROPOSITION	VII

By	[this	method]	it	may	also	be	perceived	that	[any	segment	whatever]	of	a	sphere

bears	the	same	ratio	to	a	cone	having	the	same	[base]	and	axis	[that	the	radius	of

the	sphere	+	the	axis	of	the	opposite	segment:	the	axis	of	the	opposite	segment].

.	 .	 …	 .	 …	 .	 …	 .	 …	 .	 …	 .	 …	 .	 …	 .	 …	 .	 .	 ..	 and	 [Fig.	 7]	 on	 μν	 construct	 a	 plane

perpendicular	to	αγ;	it	will	intersect	the	cylinder	in	a	circle	whose	diameter	is	μν,

the	segment	of	the	sphere	in	a	circle	whose	diameter	is	ξo	and	the	cone	whose	base

is	the	circle	on	the	diameter	ζ	and	whose	vertex	is	at	α	in	a	circle	whose	diameter	is

πρ.	In	the	same	way	as	before	it	may	be	shown	that	a	circle	whose	diameter	is	μν	is

in	 its	present	position	 in	equilibrium	at	α	with	 the	 two	circles	 [whose	diameters

are	ξo	and	πρ	 if	 they	are	so	arranged	on	the	scale-beam	that	θ	 is	 their	center	of

gravity.	 [And	 the	 same	 can	 be	 proved	 of	 all	 corresponding	 circles.]	 Now	 since

cylinder,	cone,	and	spherical	segment	are	filled	up	with	such	circles,	the	cylinder

in	its	present	position	[will	be	in	equilibrium	at

α]	with	the	cone	+	the	spherical	segment	if	they

are	 transferred	 and	 attached	 to	 the	 scale-beam

at	θ.	Divide	αη	at	φ	and	χ	so	that	αχ	=	χη	and	ηφ

=	1/3	αφ;	then	χ	will	be	the	center	of	gravity	of

the	 cylinder	because	 it	 is	 the	 center	 of	 the	 axis

αη.	 Now	 because	 the	 above	 mentioned	 bodies

are	 in	equilibrium	at	α,	cylinder:	cone	with	 the

diameter	 of	 its	 base	 ζ	 +	 the	 spherical	 segment

βαδ	=	θα:	αχ.	And	because	ηα	=	3ηφ	then	[γη	×

ηφ]	=	1/3	αη	×	ηγ.	Therefore	also	γη	×	ηφ	=	1/3

βη².	 .	 .	 …	 .	 	 .	 .	 .

.	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	.

PROPOSITION	VIIA



In	the	same	way	it	may	be	perceived	that	any	segment	of	an	ellipsoid	cut	off	by	a

perpendicular	plane,	bears	the	same	ratio	to	a	cone	having	the	same	base	and	the

same	axis,	 as	half	of	 the	axis	of	 the	ellipsoid	+	 the	axis	of	 the	opposite	 segment

bears	to	the	axis	of	the	opposite	segment.	.	.	…	.	…	.	…	.	.

PROPOSITION	VIII

.	.	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	.	.	.	.	produce	αγ

[Fig.	 8]	making	 αθ	=	 αγ	 and	 γξ	 =	 the	 radius	 of	 the	 sphere;	 imagine	 γθ	 to	 be	 a

scale-beam	with	a	center	at	α,	and	in	the	plane	cutting	off	the	segment	inscribe	a

circle	with	its	center	at	η	and	its	radius	=	αη;	on	this	circle	construct	a	cone	with

its	vertex	at	α	and	its	lateral	boundaries	α	and	αζ.	Then	draw	a	straight	line	κλ	ζ;

let	it	cut	the	circumference	of	the	segment	at	κ	and	λ,	the	lateral	boundaries	of	the

cone	α	ζ	at	ρ	and	o	and	αγ	at	π.	Now	because	αγ:	απ	=	ακ²:	απ²	and	κα²	=	απ²	+

πκ²	and	απ²	=	πo²	(since	also	αη²	=	η²	),	then	γα:	απ	=	κπ²	+	πo²:	oπ².	But	κπ²	+

πo²:	πo²	=	the	circle	with	the	diameter	κλ	+	the	circle	with	the	diameter	oρ:	the

circle	with	 the	 diameter	 oρ	 and	 γα	=	αθ;	 therefore	 θα:	 απ	=	 the	 circle	with	 the

diameter	κλ	+	the	circle	with	the	diameter	oρ:	the	circle	with	the	diameter	oρ.	Now

since	the	circle	with	the	diameter	κλ	+	the	circle	with	the	diameter	oρ:	the	circle

with	the	diameter	oρ	=	αθ:	πα,	let	the	circle	with	the	diameter	oρ	be	transferred

and	so	arranged	on	the	scale-beam	at	θ	that	θ	is

its	 center	 of	 gravity;	 then	 θα:	 απ	 =	 the	 circle

with	 the	 diameter	 κλ	 +	 the	 circle	 with	 the

diameter	oρ	in	their	present	positions:	the	circle

with	 the	diameter	 oρ	 if	 it	 is	 transferred	 and	 so

arranged	 on	 the	 scale-beam	 at	 θ	 that	 θ	 is	 its

center	 of	 gravity.	 Therefore	 the	 circles	 in	 the

segment	 βαδ	 and	 in	 the	 cone	 α	 ζ	 are	 in

equilibrium	at	α	with	that	in	the	cone	α	ζ.	And	in

the	same	way	all	circles	in	the	segment	βαδ	and

in	the	cone	α	ζ	 in	their	present	positions	are	 in

equilibrium	at	the	point	α	with	all	circles	in	the

cone	α	ζ	if	they	are	transferred	and	so	arranged

on	 the	 scate-beam	at	θ	 that	θ	 is	 their	 center	of

gravity;	then	also	the	spherical	segment	αβδ	and

the	 cone	 α	 ζ	 in	 their	 present	 positions	 are	 in



Fig.	8.equilibrium	at	the	point	α	with	the	cone	αζ	if	 it

is	transferred	and	so	arranged	on	the	scale-beam	at	θ	that	θ	is	its	center	of	gravity.

Let	the	cyIinder	μν	equal	the	cone	whose	base	is	the	circle	with	the	diameter	ζ	and

whose	vertex	 is	 at	α	and	 let	αη	be	 so	divided	at	φ	 that	αη	=	4φη;	 then	φ	 is	 the

center	of	gravity	of	 the	cone	αζ	as	has	been	previously	proved.	Moreover	 let	 the

cylinder	μν	be	so	cut	by	a	perpendicularly	intersecting	plane	that	the	cylinder	μ	is

in	equilibrium	with	the	cone	αζ.	Now	since	the	segment	αβδ	+	the	cone	αζ	in	their

present	positions	are	in	equilibrium	at	α	with	the	cone	αζ	if	it	is	transferred	and	so

arranged	on	the	scale-beam	at	θ	that	θ	 is	 its	center	of	gravity,	and	cylinder	μν	=

cone	αζ	and	the	two	cylinders	μ	+	ν	are	moved	to	θ	and	μν	is	in	equilibrium	with

both	bodies,	then	will	also	the	cylinder	ν	be	in	equilibrium	with	the	segment	of	the

sphere	at	the	point	α.	And	since	the	spherical	segment	βαδ:	the	cone	whose	base	is

the	 circle	with	 the	 diameter	 βδ,	 and	whose	 vertex	 is	 at	 α	 =	 ξη:	 ηγ	 (for	 this	 has

previously	been	proved	[De	sph.	et	cyl.	II,	2	Coroll.])	and	cone	βαδ:	cone	αζ	=	the

circle	with	the	diameter	βδ:	the	circle	with	the	diameter	ζ	=	βη²:	η²,	and	βη²	=	γη

×	ηα,	η²	=	ηα²,	and	γη	×	ηα:	ηα²	=	γη:	ηα,	therefore	cone	βαδ:	cone	αζ	=	γη:	ηα.

But	we	have	shown	that	cone	βαδ:	segment	βαδ	=	γη:	ηξ,	hence	δι’	ισου	segment

βαδ:	cone	αζ	=	ξη:	ηα.	And	because	αχ:	χη	=	ηα	+	4ηγ:	αη	+	2ηγ	so	inversely	ηχ:

χα	=	2γη	+	ηα:	4γη	+	ηα	and	by	addition	ηα:	αχ	=	6γη	+	2ηα:	ηα	+	4ηγ.	But	ηξ	=

1/4	(6ηγ	+	2ηα)	and	γφ	=	1/4	(4ηγ	+ηα);	for	that	is	evident.	Hence	ηα:	αχ	=	ξη:

γφ,	consequently	also	ξη:	ηα	=	γφ:	χα.	But	it	was	also	demonstrated	that	ξη:	ηα	=

the	segment	whose	vertex	is	at	α	and	whose	base	is	the	circle	with	the	diameter	βδ:

the	 cone	whose	 vertex	 is	 at	 α	 and	whose	 base	 is	 the	 circle	with	 the	 diameter	 ζ;

hence	segment	βαδ:	cone	αζ	=	γφ:	χα.	And	since	the	cylinder	μ	is	in	equilibrium

with	the	cone	αζ	at	α,	and	θ	is	the	center	of	gravity	of	the	cylinder	while	φ	is	that	of

the	cone	αζ,	then	cone	αζ:	cylinder	μ	=	θα:	αφ	=	γα:	αφ.	But	cylinder	μν	=	cone	αζ;

hence	by	subtraction,	cylinder	μ:	cylinder	ν	=	αφ:	γφ.	And	cylinder	μν	=	cone	αζ;

hence	 cone	αζ:	 cylinder	ν	=	γα:	γφ	=	θα:	γφ.	But	 it	was	also	demonstrated	 that

segment	βαδ:	cone	αζ	=	γφ:	χα;	hence	δι’	ισου	segment	βαδ:	cylinder	ν	=	ζα:	αχ.

And	it	was	demonstrated	that	segment	βαδ	is	in	equilibrium	at	α	with	the	cylinder

ν	and	θ	is	the	center	of	gravity	of	the	cylinder	ν,	consequently	the	point	χ	is	also

the	center	of	gravity	of	the	segment	βαδ.

PROPOSITION	IX

In	a	similar	way	it	can	also	be	perceived	that	the	center	of	gravity	of	any	segment



of	an	ellipsoid	lies	on	the	straight	line	which	is	the	axis	of	the	segment	so	divided

that	the	portion	at	the	vertex	of	the	segment	bears	the	same	ratio	to	the	remaining

portion	as	the	axis	of	the	segment	+	4	times	the	axis	of	the	opposite	segment	bears

to	the	axis	of	the	segment	+	twice	the	axis	of	the	opposite	segment.

PROPOSITION	X

It	 can	 also	 be	 seen	 by	 this	method	 that	 [a	 segment	 of	 a	 hyperboloid]	 bears	 the

same	ratio	to	a	cone	having	the	same	base	and	axis	as	the	segment,	that	the	axis	of

the	segment	+	3	times	the	addition	to	the	axis	bears	to	the	axis	of	the	segment	of

the	hyperboloid	+	twice	its	addition	[De	Conoid.	25];	and	that	the	center	of	gravity

of	 the	hyperboloid	so	divides	 the	axis	 that	 the	part	at	 the	vertex	bears	 the	same

ratio	 to	 the	 rest	 that	 three	 times	 the	 axis	 +	 eight	 times	 the	 addition	 to	 the	 axis

bears	to	the	axis	of	the	hyperboloid	+	4	times	the	addition	to	the	axis,	and	many

other	points	which	I	will	leave	aside	since	the	method	has	been	made	clear	by	the

examples	already	given	and	only	the	demonstrations	of	the	above	given	theorems

remain	to	be	stated.

PROPOSITION	XI

When	 in	 a	 perpendicular	 prism	with	 square	bases	 a	 cylinder	 is	 inscribed	whose

bases	 lie	 in	 opposite	 squares	 and	 whose	 curved	 surface	 touches	 the	 four	 other

parallelograms,	and	when	a	plane	is	passed	through	the	center	of	the	circle	which

is	 the	 base	 of	 the	 cylinder	 and	 one	 side	 of	 the	 opposite	 square,	 then	 the	 body

which	 is	cut	off	by	this	plane	[from	the	cylinder]	will	be	1/6	of	 the	entire	prism.

This	can	be	perceived	through	the	present	method	and	when	it	is	so	warranted	we

will	pass	over	to	the	geometrical	proof	of	it.

Imagine	a	perpendicular	prism	with	square	bases	and	a	cylinder	inscribed	in

the	prism	in	the	way	we	have	described.	Let	the	prism	be	cut	through	the	axis	by	a

plane	perpendicular	to	the	plane	which	cuts	off	the	section	of	the	cylinder;	this	will

intersect	the	prism	containing	the	cylinder	in	the	parallelogram	αβ	[Fig.	9]	and	the

common	 intersecting	 line	of	 the	plane	which	 cuts	off	 the	 section	of	 the	 cylinder

and	 the	 plane	 lying	 through	 the	 axis	 perpendicular	 to	 the	 one	 cutting	 off	 the

section	of	the	cylinder	will	be	βγ;	let	the	axis	of	the	cylinder	and	the	prism	be	γδ

which	 is	 bisected	 at	 right	 angles	 by	 ζ	 and	 on	 ζ	 let	 a	 plane	 be	 constructed

perpendicular	to	γδ.	This	will	intersect	the	prism	in	a	square	and	the	cylinder	in	a



Fig.	9.

Fig.	10.

circle.	 Now	 let	 the	 intersection	 of	 the

prism	be	the	square	μν	[Fig.	10],	that	of

the	cylinder,	 the	circle	ξoπρ	and	let	 the

circle	 touch	 the	 sides	 of	 the	 square	 at

the	points	ξ,	o,	π	and	ρ;	let	the	common

line	of	 intersection	of	 the	plane	 cutting

off	the	cylinder-section	and	that	passing

through	 ζ	 perpendicular	 to	 the	 axis	 of

the	cylinder,	be	κλ;	 this	 line	 is	bisected

by	 πθξ.	 In	 the	 semicircle	 oπρ	 draw	 a

straight	 line	στ	perpendicular	 to	πχ,	on

στ	construct	a	plane	perpendicular	to	ξπ

and	produce	it	to	both	sides	of	the	plane

enclosing	 the	 circle	 ξoπρ;	 this	 will

intersect	the	half-cylinder	whose	base	is

the	semicircle	oπρ	and	whose	altitude	is

the	axis	of	the	prism,	in	a	parallelogram

one	side	of	which	=	στ	and	the	other	=

the	 vertical	 boundary	 of	 the	 cylinder,

and	it	will	intersect	the	cylinder-section

likewise	in	a	parallelogram	of	which	one

side	is	στ	and	the	other	μν	[Fig.	9];	and

accordingly	 μν	 will	 be	 drawn	 in	 the

parallelogram	δ	βω	and	will	 cut	 off	 ι	 =

πχ.	 Now	 because	 γ	 is	 a	 parallelogram

and	νι	θγ,	and	θ	and	βγ	cut	the	parallels,

therefore	θ:	θι	=	ωγ:	γν	=	βω:	υν.	But	βω:	υν	=	parallelogram	in	the	half-cylinder:

parallelogram	 in	 the	 cylinder-section,	 therefore	 both	 parallelograms	 have	 the

same	 side	 στ;	 and	 θ	 =	 θπ,	 ιθ	 =	 χθ;	 and	 since	 πθ	 =	 θξ	 therefore	 θξ:	 θχ	 =

parallelogram	in	half-cylinder:	parallelogram	in	the	cylinder-section.	lmagine	the

parallelogram	in	the	cylinder-section	transferred	and	so	brought	to	ξ	that	ξ	 is	 its

center	of	gravity,	and	further	 imagine	πξ	to	be	a	scale-beam	with	 its	center	at	θ;

then	the	parallelogram	in	the	half-cylinder	in	its	present	position	is	in	equilibrium

at	the	point	θ	with	the	parallelogram	in	the	cylinder-section	when	it	is	transferred

and	so	arranged	on	the	scale-beam	at	ξ	that	ξ	is	its	center	of	gravity.	And	since	χ	is



the	 center	 of	 gravity	 in	 the	 parallelogram	 in	 the	 half-cylinder,	 and	 ξ	 that	 of	 the

parallelogram	 in	 the	cylinder-section	when	 its	position	 is	 changed,	and	ξθ:	θχ	=

the	parallelogram	whose	center	of	gravity	is	χ:	the	parallelogram	whose	center	of

gravity	 is	 ξ,	 then	 the	 parallelogram	 whose	 center	 of	 gravity	 is	 χ	 will	 be	 in

equilibrium	at	θ	with	the	parallelogram	whose	center	of	gravity	is	ξ.	In	this	way	it

can	 be	 proved	 that	 if	 another	 straight	 line	 is	 drawn	 in	 the	 semicircle	 oπρ

perpendicular	to	πθ	and	on	this	straight	line	a	plane	is	constructed	perpendicular

to	πθ	and	is	produced	towards	both	sides	of	the	plane	in	which	the	circle	ξoπρ	lies,

then	the	parallelogram	formed	in	the	half-cylinder	in	its	present	position	will	be	in

equilibrium	at	the	point	θ	with	the	parallelogram	formed	in	the	cylinder-section	if

this	 is	 transferred	and	so	arranged	on	the	scale-beam	at	ξ	 that	ξ	 is	 its	center	of-

gravity;	 therefore	 also	 all	 parallelograms	 in	 the	 half-cylinder	 in	 their	 present

positions	 will	 be	 in	 equilibrium	 at	 the	 point	 θ	 with	 all	 parallelograms	 of	 the

cylinder-section	if	they	are	transferred	and	attached	to	the	scale-beam	at	the	point

ξ;	consequently	also	the	half-cylinder	in	its	present	position	will	be	in	equilibrium

at	the	point	θ	with	the	cylinder-section	if	it	is	transferred	and	so	arranged	on	the

scale-beam	at	ξ	that	ξ	is	its	center	of	gravity.

PROPOSITION	XII

Let	the	parallelogram	μν	be	perpendicular	to	the	axis	[of	the	circle]	ξo	[πρ]	[Fig.

11].	Draw	θμ	and	θη	and	erect	upon	them	two	planes	perpendicular	to	the	plane	in

which	the	semicircle	oπρ	lies	and	extend	these	planes	on	both	sides.	The	result	is	a

prism	whose	base	 is	a	 triangle	 similar	 to	θμη	and	whose	altitude	 is	 equal	 to	 the

axis	of	 the	cylinder,	and	this	prism	is	1/4	of	 the	entire	prism	which	contains	the

cylinder.	In	the	semicircle	oπρ	and	in	the	square	μν	draw	two	straight	lines	κλ	and

τ	υ	at	equal	distances	from	πξ;	these	will	cut	the	circumference	of	the	semicircle

oπρ	at	the	points	κ	and	τ,	the	diameter	oρ	at	σ	and	ζ	and	the	straight	lines	θη	and

θμ	 at	 φ	 and	 χ.	 Upon	 κλ	 and	 τ	 υ	 construct	 two	 planes	 perpendicular	 to	 oρ	 and

extend	them	towards	both	sides	of	the	plane	in	which	lies	the	circle	ξoπρ;	they	will

intersect	the	half-cylinder	whose	base	is	the	semicircle	oπρ	and	whose	altitude	is

that	of	the	cylinder,	in	a	parallelogram	one	side	of	which	=	κσ	and	the	other	=	the

axis	 of	 the	 cylinder;	 and	 they	 will	 intersect	 the	 prism	 θημ	 likewise	 in	 a

parallelogram	one	side	of	which	is	equal	to	λχ	and	the	other	equal	to	the	axis,	and

in	the	same	way	the	half-cylinder	in	a	parallelogram	one	side	of	which	=	τ	ζ	and

the	other	=	the	axis	of	the	cylinder,	and	the	prism	in	a	parallelogram	one	side	of
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which	 =	 νφ	 and	 the	 other	 =	 the	 axis	 of	 the

cylinder.	.	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	.

PROPOSITION	XIII

Let	 the	 square	 αβγδ	 [Fig.	 12]	 be	 the	 base	 of	 a	 perpendicular	 prism	with	 square

bases	 and	 let	 a	 cylinder	 be	 inscribed	 in	 the	 prism	whose	 base	 is	 the	 circle	 ζηθ

which	 touches	 the	 sides	 of	 the	 parallelogram	αβγδ	 at,	 ζ,	 η,	 and	 θ.	 Pass	 a	 plane

through	 its	 center	 and	 the	 side	 in	 the	 square	 opposite	 the	 square	 αβγδ

corresponding	to	the	side	γδ;	this	will	cut	off	from	the	whole	prism	a	second	prism

which	 is	 1/4	 the	 size	 of	 the	 whole	 prism	 and	 which	 will	 be	 bounded	 by	 three

parallelograms	and	two	opposite	triangles.	In	the	semicircle	ζη	describe	a	parabola

whose	origin	 is	η	and	whose	axis	 is	 ζκ,	and	 in	 the	parallelogram	δη	draw	μν∥κζ;
this	will	cut	the	circumference	of	the	semicircle	at	ξ,	the	parabola	at	λ,	and	μν	×	νλ

=	 νζ²	 (for	 this	 is	 evident	 [Apollonios,	 Con.	 I,	 11]).	 Therefore	 μν:	 νλ	 =	 κη²:	 λσ².

Upon	μν	construct	a	plane	parallel	to	η;	this	will	intersect	the	prism	cut	off	from

the	whole	prism	in	a	right-angled	triangle	one	side	of	which	is	μν	and	the	other	a

straight	line	in	the	plane	upon	γδ	perpendicular	to	γδ	at	ν	and	equal	to	the	axis	of

the	cylinder,	but	whose	hypotenuse	is	in	the	intersecting	plane.	It	will	intersect	the

portion	which	is	cut	off	from	the	cylinder	by	the	plane	passed	through	η	and	the

side	of	the	square	opposite	the	side	γδ	in	a	right-angled	triangle	one	side	of	which

is	 μξ	 and	 the	 other	 a	 straight	 line	 drawn	 in	 the	 surface	 of	 the	 cylinder

perpendicular	 to	 the	 plane	 κν,	 and	 the	 hypotenuse.	 .	 .	…	 .	…	 .	…	 .	 .	 and	 all	 the

triangles	 in	 the	 prism:	 all	 the	 triangles	 in	 the	 cylinder-section	=	 all	 the	 straight

lines	in	the	parallelogram	δη:	all	the	straight	lines	between	the	parabola	and	the

straight	line	η.	And	the	prism	consists	of	the	triangles	in	the	prism,	the	cylinder-

section	of	those	in	the	cylinder-section,	the	parallelogram	δη	of	the	straight	lines

in	 the	parallelogram	δη∥κζ	and	 the	segment	of	 the	parabola	of	 the	straight	 lines
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cut	 off	 by	 the	 parabola	 and	 the	 straight	 line	 η;

hence	 prism:	 cylinder-section	 =	 parallelogram

ηδ:	segment	ζη	that	is	bounded	by	the	parabola

and	the	straight	line	η.	But	the	parallelogram	δη

=	3/2	the	segment	bounded	by	the	parabola	and

the	straight	 line	η	as	indeed	has	been	shown	in

the	 previously	 published	 work,	 hence	 also	 the

prism	 is	 equal	 to	 one	 and	 one	 half	 times	 the

cylinder-section.	 Therefore	 when	 the	 cylinder-

section	=	2,	the	prism	=	3	and	the	whole	prism

containing	 the	 cylinder	 equals	 12,	 because	 it	 is

four	times	the	size	of	the	other	prism;	hence	the	cylinder-section	is	equal	to	1/6	of

the	prism,	Q.	E.	D.

PROPOSITION	XIV

[Inscribe	a	cylinder	in]	a	perpendicular	prism	with	square	bases	[and	let	it	be	cut

by	a	plane	passed	through	the	center	of	the	base	of	the	cylinder	and	one	side	of	the

opposite	square.]	Then	this	plane	will	cut	off	a	prism	from	the	whole	prism	and	a

portion	of	the	cylinder	from	the	cylinder.	It	may	be	proved	that	the	portion	cut	off

from	 the	 cylinder	by	 the	plane	 is	one-sixth	of	 the	whole	prism.	But	 first	we	will

prove	 that	 it	 is	 possible	 to	 inscribe	 a	 solid	 figure	 in	 the	 cylinder-section	 and	 to

circumscribe	 another	 composed	 of	 prisms	 of	 equal	 altitude	 and	 with	 similar

triangles	as	bases,	so	that	the	circumscribed	figure	exceeds	the	inscribed	less	than

any	 given	 magnitude.	 .	 .	 …	 .	 …	 .	 …	 .	 …	 .	 …	 .	 .	 .

…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	…	.	.	.

But	it	has	been	shown	that	the	prism	cut	off	by	the	inclined	plane	<	3/2	the

body	 inscribed	 in	 the	 cylinder-section.	 Now	 the	 prism	 cut	 off	 by	 the	 inclined

plane:	 the	 body	 inscribed	 in	 the	 cylinder-section	 =	 parallelogram	 δη:	 the

parallelograms	which	are	inscribed	in	the	segment	bounded	by	the	parabola	and

the	 straight	 line	 η.	Hence	 the	 parallelogram	δη	<	 3/2	 the	 parallelograms	 in	 the

segment	bounded	by	 the	parabola	and	 the	 straight	 line	η.	But	 this	 is	 impossible

because	we	have	shown	elsewhere	 that	 the	parallelogram	δη	 is	one	and	one	half

times	the	segment	bounded	by	the	parabola	and	the	straight	line	η,	consequently

is.	.	.	…	.	…	.	…	.	…	.	.	not	greater.	.	.	…	.	…	.	…	.	.	..	..



And	 all	 prisms	 in	 the	 prism	 cut	 off	 by	 the	 inclined	 plane:	 all	 prisms	 in	 the

figure	 described	 around	 the	 cylinder-section	 =	 all	 parallelograms	 in	 the

parallelogram	δη:	all	parallelograms	 in	 the	 figure	which	 is	described	around	 the

segment	bounded	by	the	parabola	and	the	straight	line	η,	i.	e.,	the	prism	cut	off	by

the	 inclined	 plane:	 the	 figure	 described	 around	 the	 cylinder-section	 =

parallelogram	δη:	the	figure	bounded	by	the	parabola	and	the	straight	line	η.	But

the	prism	cut	off	by	the	inclined	plane	is	greater	than	one	and	one	half	times	the

solid	 figure	 circumscribed	 around	 the	 cylinder-section.
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